Your browser doesn't support javascript.
loading
Revealing the Filler-Matrix Interfacial Interactions: Real-Time Observation with Mechano-Responsive Spiropyran Microbeads.
Jang, Han Gyeol; Jo, Jun Young; Jung, Unseok; Kim, Young Nam; Jung, Yong Chae; Lee, Hunsu; Lee, Doh C; Kim, Jaewoo.
Afiliación
  • Jang HG; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
  • Jo JY; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
  • Jung U; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
  • Kim YN; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
  • Jung YC; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
  • Lee H; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
  • Lee DC; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
  • Kim J; Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905, Korea.
ACS Appl Mater Interfaces ; 16(35): 46719-46727, 2024 Sep 04.
Article en En | MEDLINE | ID: mdl-39177440
ABSTRACT
Interfacial interactions between polymers and fillers play a crucial role in determining the performance of composite materials. In this study, mechano-responsive spiropyran (SP) beads, which exhibit fluorescence changes under stress, serve as force probes to evaluate force transfer efficiency across two types of interfaces noncovalent and covalent. These interfaces are engineered by respectively employing physical blending and grafting polymerization to integrate hydroxyl SP beads with a polyurethane (PU) matrix. A custom-built in situ opto-mechanical setup quantitatively assesses force transfer by monitoring changes in fluorescence intensity and peak wavelength during specimen stretching. The analysis reveals that the covalent interface significantly outperforms the noncovalent interface, demonstrating a 100% improvement in force magnitude and transfer rate from the PU matrix to the SP beads. Direct observation of SP beads within the PU matrix during tension unveils that enhanced force transfer efficiency is closely linked to changes in the SP beads' aspect ratio. Fluorescence changes in SP beads are solely a function of aspect ratio, making them effective independent force probes.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos