Your browser doesn't support javascript.
loading
The surface tension of Martini 3 water mixtures.
Iannetti, Lorenzo; Cambiaso, Sonia; Rasera, Fabio; Giacomello, Alberto; Rossi, Giulia; Bochicchio, Davide; Tinti, Antonio.
Afiliación
  • Iannetti L; Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy.
  • Cambiaso S; Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
  • Rasera F; Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy.
  • Giacomello A; Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy.
  • Rossi G; Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
  • Bochicchio D; Dipartimento di Fisica, Università of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
  • Tinti A; Dipartimento di Ingegneria Meccanica ed Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy.
J Chem Phys ; 161(8)2024 Aug 28.
Article en En | MEDLINE | ID: mdl-39189655
ABSTRACT
The Martini model, a coarse-grained forcefield for biomolecular simulations, has experienced a vast increase in popularity in the past decade. Its building-block approach balances computational efficiency with high chemical specificity, enabling the simulation of organic and inorganic molecules. The modeling of coarse-grained beads as Lennard-Jones particles poses challenges for the accurate reproduction of liquid-vapor interfacial properties, which are crucial in various applications, especially in the case of water. The latest version of the forcefield introduces refined interaction parameters for water beads, tackling the well-known artifact of Martini water freezing at room temperature. In addition, multiple sizes of water beads are available for simulating the solvation of small cavities, including the smallest pockets of proteins. This work focuses on studying the interfacial properties of Martini water, including surface tension and surface thickness. Employing the test-area method, we systematically compute the liquid-vapor surface tension across various combinations of water bead sizes and for temperatures from 300 to 350 K. These findings are of interest to the Martini community as they allow users to account for the low interfacial tension of Martini water by properly adjusting observables computed via coarse-grained simulations to allow for accurate matching against all-atom or experimental results. Surface tension data are also interpreted in terms of local enrichment of the various mixture components at the liquid-vapor interface by means of Gibbs' adsorption formalism. Finally, the critical scaling of the Martini surface tension with temperature is reported to be consistent with the critical exponent of the 3D Ising universality class.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys / J. chem. phys / Journal of chemical physics Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys / J. chem. phys / Journal of chemical physics Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Estados Unidos