Your browser doesn't support javascript.
loading
Advances in the biosynthesis of tetraacetyl phytosphingosine, a key substrate of ceramides.
Zhang, Xin; Zhang, Xiaochen; Lin, Lu; Wang, Kaifeng; Ji, Xiao-Jun.
Afiliación
  • Zhang X; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
  • Zhang X; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
  • Lin L; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
  • Wang K; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
  • Ji XJ; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
Synth Syst Biotechnol ; 10(1): 1-9, 2025.
Article en En | MEDLINE | ID: mdl-39193251
ABSTRACT
Ceramides, formed by the dehydration of long-chain fatty acids with phytosphingosine and its derivatives, are widely used in skincare, cosmetics, and pharmaceuticals. Due to the exceedingly low concentration of phytosphingosine in plant seeds, relying on the extraction method is highly challenging. Currently, the primary method for obtaining phytosphingosine is the deacetylation of tetraacetyl phytosphingosine (TAPS) derived from fermentation. Wickerhamomyces ciferrii, an unconventional yeast from the pods of Dipteryx odorata, is the only known microorganism capable of naturally secreting TAPS, which is of great industrial value. In recent years, research and applications focused on modifying W. ciferrii for TAPS overproduction have increased rapidly. This review first describes the discovery history, applications, microbial synthesis pathway of TAPS. Research progress in using haploid breeding, mutagenesis breeding, and metabolic engineering to improve TAPS production is then summarized. In addition, the future prospects of TAPS production using the W. ciferrii platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future researches are also emphasized.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Synth Syst Biotechnol Año: 2025 Tipo del documento: Article Pais de publicación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Synth Syst Biotechnol Año: 2025 Tipo del documento: Article Pais de publicación: China