Bias-free glucose/O2 bio-photoelectrochemical system for multi-energy conversion and phenolic pollutant degradation.
Biosens Bioelectron
; 266: 116714, 2024 Dec 15.
Article
en En
| MEDLINE
| ID: mdl-39216204
ABSTRACT
Developing a multi-functional green energy device that propels sustainable energy development and concurrently purifies environmental pollutants offers an irresistibly compelling vision for a cleaner future. Herein, we reported a bias-free glucose/O2 bio-photoelectrochemical system (BPECS) for both energy conversion and phenolic pollutants degradation. Coupling a glucose dehydrogenase (GDH) modified self-assembled meso-tetrakis (4-carboxyphenyl)-porphyrin (SA-TCPP)-sensitized TiO2 biophotoanode for glucose oxidation and nitrogen/oxygen doped cobalt single-atom catalyst (CoNOC) cathode for two-electron oxygen reduction, both solar and biochemical energies were converted into electric power in BPECS with a maximum power density of 296.98 µW cm-2 (0.49 V). Working in synergy with horseradish peroxidase (HRP) biocatalysis, the cathode-generated H2O2, a by-product, is effectively redeployed for degrading phenol, attaining an impressive degradation efficiency of approximately 100% within 60 min. Additionally, aiming to scale up this ingenious BPECS approach, peroxidase-mimicking Co3O4 nanozyme were engineered as a substitute for natural HRP. Remarkably, these nanozyme demonstrated a comparable degradation efficiency, achieving the same result in 90 min. In this work, our results demonstrate that this bias-free glucose/O2 BPECS model marks a significant step forward in integrating renewable energy harvesting with environmental remediation, but also opens new avenues for the versatile application of nanozymes.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Técnicas Biosensibles
/
Glucosa
Idioma:
En
Revista:
Biosens Bioelectron
Asunto de la revista:
BIOTECNOLOGIA
Año:
2024
Tipo del documento:
Article
Pais de publicación:
Reino Unido