Your browser doesn't support javascript.
loading
Serotonin's Role in Inflammatory Signaling Pathway Modulation for Colon Cancer Suppression.
Maheshwarla Saravanan, Supreeta; Prathap, Lavanya; Padathpeedika Khalid, Jabir; Mary Martin, Taniya; Kishore Kumar, Meenakshi S.
Afiliación
  • Maheshwarla Saravanan S; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre (BRULAC) Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Prathap L; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre (BRULAC) Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Padathpeedika Khalid J; Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Mary Martin T; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre (BRULAC) Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
  • Kishore Kumar MS; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre (BRULAC) Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND.
Cureus ; 16(8): e66040, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39224738
ABSTRACT
Background Neurons can be effectively regulated by serotonin and dopamine. Their role in anti-inflammatory pathways opens new doors for therapeutic research, particularly in chemotherapeutics. The present study investigated serotonin's role in suppressing inflammation and its potential anticancer effects in KERATIN-forming tumor cell line HeLa cells (KB cells).  Methodsin vitro and in silico analysis The study delved further into the molecular mechanisms by assessing the expression levels of key markers involved in inflammation and cancer progression, such as B-cell leukemia/lymphoma 2 protein (BCl-2), tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) using Real-time reverse-transcriptase-polymerase chain reaction at concentrations below the IC50 (50 and 100 µg/ml). The binding capability of serotonin (CID 5202) with glycoform of human interleukin 6 (PDB 7NXZ) was analyzed with the help of Schrodinger molecular suites. Results The findings showcased serotonin's potent growth inhibition in KB cells, with an IC50 value of 225±3.1µg/ml. Additionally, it demonstrated a multifaceted impact by downregulating the expression of BCl-2, TNF-α, and IL-6, pivotal factors in cancer cell survival and inflammation regulation. The docking score was - 5.65 (kcal/mol) between serotonin and glycoform of Human Interleukin 6. It is bound with ASN 143 by two hydrogen bonds. Thus, molecular docking analysis showed an efficient bounding pattern. The research findings indicate that serotonin successfully blocks NF-κB pathways in KB cells, underscoring its therapeutic promise against colon cancer and offering vital information for additional clinical investigation.  Conclusion According to the study's conclusion, serotonin has a remarkable anticancer potential by effectively blocking NF-κB B pathways in KB cells, revealing its promising potential as a therapeutic agent against colon cancer. These comprehensive findings offer significant insights into serotonin's intricate molecular interactions and its profound impact on cancer-related signaling pathways, paving the way for further exploration and potential clinical applications in cancer treatment strategies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Cureus Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos