Your browser doesn't support javascript.
loading
Bifunctional ArsI Dioxygenase from Acidovorax sp. ST3 with Both Methylarsenite [MAs(III)] Demethylation and MAs(III) Oxidation Activities.
Shen, Jie; Tang, Shi-Tong; Wang, Ya-Nan; Li, Xue-Ting; Chen, Jian; Sarkarai Nadar, Venkadesh; Rosen, Barry P; Zhang, Jun; Zhao, Fang-Jie.
Afiliación
  • Shen J; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
  • Tang ST; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
  • Wang YN; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
  • Li XT; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
  • Chen J; Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States.
  • Sarkarai Nadar V; Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States.
  • Rosen BP; Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States.
  • Zhang J; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
  • Zhao FJ; Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
Environ Sci Technol ; 58(37): 16444-16453, 2024 Sep 17.
Article en En | MEDLINE | ID: mdl-39226438
ABSTRACT
Methylated arsenicals, including highly toxic species, such as methylarsenite [MAs(III)], are pervasive in the environment. Certain microorganisms possess the ability to detoxify MAs(III) by ArsI-catalyzed demethylation. Here, we characterize a bifunctional enzyme encoded by the arsI gene from Acidovorax sp. ST3, which can detoxify MAs(III) through both the demethylation and oxidation pathways. Deletion of the 22 C-terminal amino acids of ArsI increased its demethylation activity while reducing the oxidation activity. Further deletion of 44 C-terminal residues enhanced the MAs(III) demethylation activity. ArsI has four vicinal cysteine pairs, with the first pair being necessary for MAs(III) demethylation, while at least one of the other three pairs contributes to MAs(III) oxidation. Molecular modeling and site-directed mutagenesis indicated that one of the C-terminal vicinal cysteine pairs is involved in modulating the switch between oxidase and demethylase activity. These findings underscore the critical role of the C-terminal region in modulating the enzymatic activities of ArsI, particularly in MAs(III) demethylation. This research reveals the structure-function relationship of the ArsI enzyme and advances our understanding of the MAs(III) metabolism in bacteria.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Dioxigenasas Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxidación-Reducción / Dioxigenasas Idioma: En Revista: Environ Sci Technol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos