Your browser doesn't support javascript.
loading
Queuosine salvage in Bartonella henselae Houston 1: a unique evolutionary path.
Quaiyum, Samia; Yuan, Yifeng; Sun, Guangxin; Ratnayake, R M Madhushi N; Hutinet, Geoffrey; Dedon, Peter C; Minnick, Michael F; de Crécy-Lagard, Valérie.
Afiliación
  • Quaiyum S; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
  • Yuan Y; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
  • Sun G; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
  • Ratnayake RMMN; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
  • Hutinet G; Present address: Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
  • Dedon PC; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA.
  • Minnick MF; Present address: Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA, USA.
  • de Crécy-Lagard V; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Microbiology (Reading) ; 170(9)2024 Sep.
Article en En | MEDLINE | ID: mdl-39234940
ABSTRACT
Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins (1) the distinctive enzyme tRNA guanine-34 transglycosylase (bacterial TGT, or bTGT), responsible for inserting precursor bases into target tRNAs; and (2) queuosine precursor transporter (QPTR), a transporter protein that imports Q precursors. Organisms such as the facultative intracellular pathogen Bartonella henselae, which possess only bTGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their bTGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, MS analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae bTGT and QPTR not only utilize preQ1, akin to their Escherichia coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens - from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 confers fitness advantages when B. henselae is growing outside a mammalian host.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bartonella henselae / Nucleósido Q Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bartonella henselae / Nucleósido Q Idioma: En Revista: Microbiology (Reading) Asunto de la revista: MICROBIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido