Your browser doesn't support javascript.
loading
Responses of soil antibiotic resistance genes to the decrease in grain size of sediment discharged into Dongting Lake, China.
Wu, Haipeng; Xu, Guxiang; Yang, Ruiqing; Dai, Juan; Al-Dhabi, Naif Abdullah; Wang, Guiqiao; Zhou, Lu; Tang, Wangwang.
Afiliación
  • Wu H; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China. Electronic address: wuhaipeng0701@126.com.
  • Xu G; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
  • Yang R; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
  • Dai J; Changjiang River Scientific Research Institute, Wuhan 430072, China.
  • Al-Dhabi NA; Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
  • Wang G; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
  • Zhou L; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
  • Tang W; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
Sci Total Environ ; 953: 176091, 2024 Sep 06.
Article en En | MEDLINE | ID: mdl-39244058
ABSTRACT
Sediment or soil in wetlands is regarded as an important sink of antibiotic resistance genes (ARGs). However, there are no studies on the effects of sediment changes (which caused changes in soil texture) on soil ARGs in wetland. Here, we collected topsoil samples from 12 study sites that were deposited in early (prior to the 1970s) or recent years to reveal the responses of soil ARGs to the decrease in grain size of sediment discharged into Dongting Lake. The results indicated that it caused significant increases in clay content, soil organic matter (SOM), moisture, and bacterial abundance. The absolute abundance of 38 % ARG subtypes, 62 % ARG types, and the total ARG concentrations showed a significant increase. The composition of ARG profiles also showed significant changes. For mobile genetic elements (MGEs), the levels of plasmid, insertional, and transposase were significantly elevated. Notably, clay content, moisture, SOM, and bacterial abundance presented very strong positive correlation with most ARG and total ARG abundance. The contributions of physicochemical characteristics and bacterial abundance to ARG variations were ranked as follows 16S rRNA > SOM > moisture > pH > soil texture (clay, sand and silt) > nitrate nitrogen > ammonium nitrogen. Bacterial abundance, SOM, moisture, and soil texture were the primary environmental parameters contributing to the soil ARG variations in this research. These changes of ARGs may pose risks to ecosystems and public health.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos