Your browser doesn't support javascript.
loading
Leveraging diverse cellular stress patterns for predicting clinical outcomes and therapeutic responses in patients with multiple myeloma.
Xu, Jiaxuan; Dong, Xiaoqing; Dong, Jiahui; Peng, Yue; Xing, Mengying; Chen, Lanxin; Zhao, Quan; Chen, Bing.
Afiliación
  • Xu J; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Dong X; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Dong J; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Peng Y; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Xing M; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Chen L; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Zhao Q; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
  • Chen B; Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China.
J Cell Mol Med ; 28(17): e70054, 2024 Sep.
Article en En | MEDLINE | ID: mdl-39245797
ABSTRACT
Tumour microenvironment harbours diverse stress factors that affect the progression of multiple myeloma (MM), and the survival of MM cells heavily relies on crucial stress pathways. However, the impact of cellular stress on clinical prognosis of MM patients remains largely unknown. This study aimed to provide a cell stress-related model for survival and treatment prediction in MM. We incorporated five cell stress patterns including heat, oxidative, hypoxic, genotoxic, and endoplasmic reticulum stresses, to develop a comprehensive cellular stress index (CSI). Then we systematically analysed the effects of CSI on survival outcomes, clinical characteristics, immune microenvironment, and treatment sensitivity in MM. Molecular subtypes were identified using consensus clustering analysis based on CSI gene profiles. Moreover, a prognostic nomogram incorporating CSI was constructed and validated to aid in personalised risk stratification. After screening from five stress models, a CSI signature containing nine genes was established by Cox regression analyses and validated in three independent datasets. High CSI was significantly correlated with cell division pathways and poor clinical prognosis. Two distinct MM subtypes were identified through unsupervised clustering, showing significant differences in prognostic outcomes. The nomogram that combined CSI with clinical features exhibited good predictive performances in both training and validation cohorts. Meanwhile, CSI was closely associated with immune cell infiltration level and immune checkpoint gene expression. Therapeutically, patients with high CSI were more sensitive to bortezomib and antimitotic agents, while their response to immunotherapy was less favourable. Furthermore, in vitro experiments using cell lines and clinical samples verified the expression and function of key genes from CSI. The CSI signature could be a clinically applicable indicator of disease evaluation, demonstrating potential in predicting prognosis and guiding therapy for patients with MM.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nomogramas / Microambiente Tumoral / Mieloma Múltiple Límite: Female / Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nomogramas / Microambiente Tumoral / Mieloma Múltiple Límite: Female / Humans Idioma: En Revista: J Cell Mol Med Asunto de la revista: BIOLOGIA MOLECULAR Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido