Your browser doesn't support javascript.
loading
Development of tetravalent antibody-enzyme complexes employing a lactate oxidase and the application to electrochemical immunosensors.
Oda, Miho; Hiraka, Kentaro; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji; Asano, Ryutaro.
Afiliación
  • Oda M; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
  • Hiraka K; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; College of Science, Engineering and Technology, Grand Canyon University, 3300 W Camelback Rd, Phoenix, AZ, 85017, USA; Expl
  • Tsugawa W; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
  • Ikebukuro K; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
  • Sode K; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA. Electronic address: ksode@email.unc.edu.
  • Asano R; Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 18
Biosens Bioelectron ; 267: 116741, 2024 Sep 03.
Article en En | MEDLINE | ID: mdl-39250870
ABSTRACT
Antibody-enzyme complexes (AECs) are ideal for immunosensing. Although AECs using antibody fragments can be produced by bacterial hosts, their low affinity limits their sensing applications. We have improved the affinity of AECs by combining two antibodies using Catcher/Tag systems; however, it requires multiple antibodies and an enzyme production process. In this study, to realize the production of AECs harboring multiple antibody fragments in a single production process, we report a versatile development method of unique AECs based on a multimeric enzyme structure. Using the homotetrameric enzyme, lactate oxidase (LOx), as a labeling enzyme, tetravalent AECs were developed as an electrochemical immunosensor. Homogeneous tetravalent AECs were successfully fabricated by fusing the anti-epidermal growth factor receptor (EGFR) variable domain of a heavy chain of heavy chain antibody to the N-terminus of LOx. The prepared AECs bound to EGFR, maintain their enzyme activity, and worked well as sensing elements in electrochemical sandwich enzyme-linked immunosorbent assay. Moreover, tetravalent AECs exhibited higher sensitivity than monovalent AECs because of their avidity. The fabricated AECs were successfully used in a wash-free homogeneous electrochemical detection system combined with magnetic separation. Our findings offer new insights into the applications of the LOx tetrameric enzyme for the fabrication of AECs with tetravalent antibodies, which may serve as scaffolds for immunosensors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Japón Pais de publicación: Reino Unido