Visible Light-Switchable Lattice Oxygen Sites for Selective C-H and C(O)-C Bond Electrooxidation.
Angew Chem Int Ed Engl
; : e202410555, 2024 Sep 09.
Article
en En
| MEDLINE
| ID: mdl-39251391
ABSTRACT
Lattice-oxygen is highly oxidizable, ideal for electrocatalytic C-H oxidation but insufficient alone for C(O)-C bond cleavage due to the non-removable nature of lattice sites. Here, we present a visible light-assisted electrochemical method of in situ formulating removable lattice-oxygen sites in a nickel-oxyhydroxide (ESE-NiOOH) electrocatalyst. This catalyst efficiently converts aromatic alcohols and carbonyls with C(O)-C fragments from lignin and plastics into benzoic acids (BAs) with high yields (83-99 %). Without light irradiation, ESE-NiOOH's intrinsic lattice-oxygen is non-removable and inert for C(O)-C bond cleavage. In situ characterizations show light-induced lattice-oxygen removal and regeneration via OH- refilling. Theoretical calculations identify the nucleophilic oxygen attack on ketone-derived carbanion as a rate-determining step, which can be remarkably facilitated by removable lattice-oxygen to activate α-C-H bonds. As a proof-of-concept, an "electrochemical funnel" strategy is developed for high-efficiency upgrading aromatic mixtures with C(O)-C moieties into BA with up to 94 % yield. This in situ removal-regeneration approach for lattice sites opens an avenue for the tailored design of interfacial electrocatalysts to selectively upcycle waste carbon sources into valuable products.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania