Your browser doesn't support javascript.
loading
Electrochemistry Beyond Solutions: Modeling Particle Self-Crowding of Nanoparticle Suspensions.
Arnot, David J; Yan, Shan; Pace, Alexis; Ma, Lu; Ehrlich, Steven N; Takeuchi, Esther S; Marschilok, Amy C; Colosqui, Carlos E; Takeuchi, Kenneth J.
Afiliación
  • Arnot DJ; Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States.
  • Yan S; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.
  • Pace A; Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States.
  • Ma L; Interdisciplinary Science Department, Brookhaven National Laboratory, Upton New York 11973, United States.
  • Ehrlich SN; Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States.
  • Takeuchi ES; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
  • Marschilok AC; National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States.
  • Colosqui CE; Institute of Energy: Sustainability, Environment, and Equity, Stony Brook University, Stony Brook, New York 11794, United States.
  • Takeuchi KJ; Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States.
J Am Chem Soc ; 146(38): 26360-26368, 2024 Sep 25.
Article en En | MEDLINE | ID: mdl-39259825
ABSTRACT
Nanoparticle suspensions hold promise to transform functionality of next-generation electrochemical systems including batteries, capacitors, wastewater treatment, and sensors, challenging the limits of existing electrochemical models. Classical solution-based electrochemistry assumes that charge is transported and transferred by point-like carriers. Herein, we examine the electrochemistry of a model aqueous suspension of nondissolvable electroactive nanoparticles over a wide concentration range using a rotating disk electrode. Past a concentration and rotation rate threshold, the electrochemistry deviates from solution theory with a maximum attainable current due to particle "self-crowding" where reacted particles on the electrode surface reduce the area accessible for charge transfer by unreacted particles. The observed response is rationalized with an analytical model considering the physical adsorption/desorption kinetics and interfacial transport of nondissolvable finite-size charge carriers. Experimental validation shows the model to be applicable across a range of electrode sizes and thus suitable for engineering electrochemical systems employing nondissolvable nanoparticle suspensions.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Chem Soc Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos