Your browser doesn't support javascript.
loading
Wearable Sensor-Based Assessments for Remotely Screening Early-Stage Parkinson's Disease.
Johnson, Shane; Kantartjis, Michalis; Severson, Joan; Dorsey, Ray; Adams, Jamie L; Kangarloo, Tairmae; Kostrzebski, Melissa A; Best, Allen; Merickel, Michael; Amato, Dan; Severson, Brian; Jezewski, Sean; Polyak, Steve; Keil, Anna; Cosman, Josh; Anderson, David.
Afiliación
  • Johnson S; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Kantartjis M; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Severson J; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Dorsey R; Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Adams JL; Department of Neurology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Kangarloo T; Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Kostrzebski MA; Department of Neurology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Best A; Takeda Pharmaceuticals, Cambridge, MA 02142, USA.
  • Merickel M; Center for Health and Technology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Amato D; Department of Neurology, University of Rochester Medical Center, Rochester, NY 14623, USA.
  • Severson B; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Jezewski S; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Polyak S; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Keil A; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Cosman J; Clinical Ink, Winston-Salem, NC 27101, USA.
  • Anderson D; Clinical Ink, Winston-Salem, NC 27101, USA.
Sensors (Basel) ; 24(17)2024 Aug 30.
Article en En | MEDLINE | ID: mdl-39275547
ABSTRACT
Prevalence estimates of Parkinson's disease (PD)-the fastest-growing neurodegenerative disease-are generally underestimated due to issues surrounding diagnostic accuracy, symptomatic undiagnosed cases, suboptimal prodromal monitoring, and limited screening access. Remotely monitored wearable devices and sensors provide precise, objective, and frequent measures of motor and non-motor symptoms. Here, we used consumer-grade wearable device and sensor data from the WATCH-PD study to develop a PD screening tool aimed at eliminating the gap between patient symptoms and diagnosis. Early-stage PD patients (n = 82) and age-matched comparison participants (n = 50) completed a multidomain assessment battery during a one-year longitudinal multicenter study. Using disease- and behavior-relevant feature engineering and multivariate machine learning modeling of early-stage PD status, we developed a highly accurate (92.3%), sensitive (90.0%), and specific (100%) random forest classification model (AUC = 0.92) that performed well across environmental and platform contexts. These findings provide robust support for further exploration of consumer-grade wearable devices and sensors for global population-wide PD screening and surveillance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Dispositivos Electrónicos Vestibles Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Dispositivos Electrónicos Vestibles Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza