Your browser doesn't support javascript.
loading
Efficient hydrogen production from formic acid dehydrogenation over ultrasmall PdIr nanoparticles on amine-functionalized yolk-shell mesoporous silica.
Chai, Hao; Hu, Jinsong; Zhang, Rongmei; Feng, Youcheng; Li, Haidong; Liu, Zhentao; Zhou, Chunhui; Wang, Xilong.
Afiliación
  • Chai H; School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China.
  • Hu J; School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China. Electronic address: jshu@aust.edu.cn.
  • Zhang R; School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China.
  • Feng Y; School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China.
  • Li H; School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China. Electronic address: lihaidong@lyu.edu.cn.
  • Liu Z; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China.
  • Zhou C; School of Chemical and Blasting Engineering, Analytical and Testing Center, Anhui Province Key Laboratory of Specialty Polymers, Anhui Provincial Institute of Modern Coal Processing Technology, Anhui University of Science and Technology, Huainan 232001, China. Electronic address: chzhou@aust.edu.cn.
  • Wang X; State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum (Beijing), Beijing 102249, China. Electronic address: wxl@cup.edu.cn.
J Colloid Interface Sci ; 678(Pt C): 261-271, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-39298977
ABSTRACT
Developing heterogeneous catalysts with exceptional catalytic activity over formic acid (HCOOH, FA) dehydrogenation is imperative to employ FA as an effective hydrogen (H2) carrier. In this work, ultrasmall (1.4 nm) and well-dispersed PdIr nanoparticles (NPs) immobilized on amine-functionalized yolk-shell mesoporous silica nanospheres (YSMSNs) with radially oriented mesoporous channels have been synthesized by a co-reduction strategy. The optimized catalyst Pd4Ir1/YSMSNs-NH2 (Pd/Ir molar ratio = 41) exhibited a remarkable turnover frequency (TOF) of 5818 h-1 and remarkable stability at 50 °C with the addition of sodium formate (SF), resulting in complete FA conversion and H2 selectivity, exceeding most of the solid heterogeneous catalysts in previous reports under similar circumstances. Kinetic isotope effect (KIE) exploration indicates the cleavage of the CH bond is regarded as the rate-determining step (RDS) during the FA dehydrogenation process. Such excellent catalytic properties arise from the ultrafine and well-dispersed PdIr NPs supported on the nanosphere support YSMSNs-NH2, the electronic synergistic effect of PdIr alloy NPs, and the strong metal-support interaction (MSI) effect between the introduced PdIr NPs and YSMSNs-NH2 support. This work offers a new paradigm for exploiting the highly effective silica-supported Pd-based heterogeneous catalysts over the dehydrogenation of FA.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos