Your browser doesn't support javascript.
loading
A comprehensive study of catalytic pyrolysis of antibiotic fermentation residue over red mud-Ca(OH)2 composites.
Cui, Xiaomin; Ting, Zhaojia; Fu, Jiawen; Thiruketheeswaranathan, Suthajini; Dong, Weiguo; Zhao, Ming.
Afiliación
  • Cui X; School of Environment, Tsinghua University, Beijing 100084, China.
  • Ting Z; School of Environment, Tsinghua University, Beijing 100084, China.
  • Fu J; School of Environment, Tsinghua University, Beijing 100084, China.
  • Thiruketheeswaranathan S; School of Environment, Tsinghua University, Beijing 100084, China; Department of Biosystems Technology, Faculty of Technology, Eastern University, 30350, Sri Lanka.
  • Dong W; School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215263, China.
  • Zhao M; School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215263, China. Electronic address: ming.zhao@tsinghua.edu.cn.
J Hazard Mater ; 480: 135772, 2024 Sep 20.
Article en En | MEDLINE | ID: mdl-39305591
ABSTRACT
This study focuses on the in-situ catalytic pyrolysis of the Penicillin fermentation residue (PFR), a typical antibiotic fermentation residues (AFR), using a red mud-Ca(OH)2 composite (RM-xCa) to enhance syngas production, tar conversion, and desulfurization. The invesitigation explored the effects of different preparation methods, amount of CaO addition, and final pyrolysis temperature on the performance of RM-xCa composites. The RM-xCa composite prepared by the hydrothermal method with pressure exhibited higher catalytic activity due to the formation of soluble Na through cation exchange. The amount of CaO added determined the sulfur adsorption capacity of RM-xCa, as well as the amount of H2O and CO2 involved in tar reforming and char gasification reactions. Final pyrolysis temperature significantly influenced the reduction state of Fe2O3 and decomposition of Ca(OH)2, affecting the catalytic activity and sulfur adsorption behavior of RM-xCa composites. The optimized RM-xCa composite, RM-4Ca-HT, decreased tar and H2S formationby 34 % and 38 %, respectively, at 700 °C. Additionally, RM-xCa composites can lower the oxygen and sulfur content of tar. Solid residues from PFR catalytic pyrolysis were found suitable for reused as catalysts in further tar removal process.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos