Your browser doesn't support javascript.
loading
Chem-CRISPR/dCas9FCPF: a platform for chemically induced epigenome editing.
Altinbay, Mukaddes; Wang, Jianhui; Chen, Jie; Schäfer, Daniel; Sprang, Maximilian; Blagojevic, Biljana; Wölfl, Stefan; Andrade-Navarro, Miguel A; Dikic, Ivan; Knapp, Stefan; Cheng, Xinlai.
Afiliación
  • Altinbay M; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.
  • Wang J; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.
  • Chen J; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.
  • Schäfer D; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.
  • Sprang M; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.
  • Blagojevic B; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.
  • Wölfl S; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596 Frankfurt am Main, Germany.
  • Andrade-Navarro MA; University Cancer Center (UCT) Frankfurt, Theodor-Stern-Kai7, 60590, Frankfurt am Main, Germany.
  • Dikic I; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.
  • Knapp S; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.
  • Cheng X; Faculty of Biology, Johannes Gutenberg University Mainz, Gresemundweg 2, 55128 Mainz, Germany.
Nucleic Acids Res ; 2024 Sep 24.
Article en En | MEDLINE | ID: mdl-39315698
ABSTRACT
Epigenetic aberration is one of the major driving factors in human cancer, often leading to acquired resistance to chemotherapies. Various small molecule epigenetic modulators have been reported. Nonetheless, outcomes from animal models and clinical trials have underscored the substantial setbacks attributed to pronounced on- and off-target toxicities. To address these challenges, CRISPR/dCas9 technology is emerging as a potent tool for precise modulation of epigenetic mechanism. However, this technology involves co-expressing exogenous epigenetic modulator proteins, which presents technical challenges in preparation and delivery with potential undesirable side effects. Recently, our research demonstrated that Cas9 tagged with the Phe-Cys-Pro-Phe (FCPF)-peptide motif can be specifically targeted by perfluorobiphenyl (PFB) derivatives. Here, we integrated the FCPF-tag into dCas9 and established a chemically inducible platform for epigenome editing, called Chem-CRISPR/dCas9FCPF. We designed a series of chemical inhibitor-PFB conjugates targeting various epigenetic modulator proteins. Focusing on JQ1, a panBET inhibitor, we demonstrate that c-MYC-sgRNA-guided JQ1-PFB specifically inhibits BRD4 in close proximity to the c-MYC promoter/enhancer, thereby effectively repressing the intricate transcription networks orchestrated by c-MYC as compared with JQ1 alone. In conclusion, our Chem-CRISPR/dCas9FCPF platform significantly increased target specificity of chemical epigenetic inhibitors, offering a viable alternative to conventional fusion protein systems for epigenome editing.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nucleic Acids Res Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido