Your browser doesn't support javascript.
loading
Preparation of accelerated-wound-healing lignin/dopamine-based nano-Fe3O4 hydrogels in sensing.
Lu, Geng; Zhang, Lisha; Zhang, Yue; Wang, Jun; Zhou, Xin; Fang, Xiang; Ma, Zhengliang.
Afiliación
  • Lu G; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
  • Zhang L; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
  • Zhang Y; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 21
  • Wang J; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
  • Zhou X; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Fang X; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address: ahnufx@1
  • Ma Z; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China. Electronic address: mazhengliang1964@nju.edu.cn.
Int J Biol Macromol ; 280(Pt 3): 135942, 2024 Sep 23.
Article en En | MEDLINE | ID: mdl-39322138
ABSTRACT
Flexible conductive hydrogels hold great promise for applications in motion and medical detection. It is difficult to produce conductive hydrogel epidermal sensors in wearable hydrogels with dependable adhesion, sensing, and wound-healing properties. Nano-Fe3O4 was used as physical cross-linking points in the polyacrylamide/polyvinyl alcohol double network (PP) to increase the strain capacity of the hydrogel. The conductive lignin-dopamine (LD) was immobilized on the surface of Fe3O4 particles, and the LD-coated Fe3O4 was then incorporated into the double network hydrogel to create the PP/LD/Fe3O4 hydrogel. This work was done to look into the possibility of using Fe3O4 hydrogels as flexible strain sensors. The addition of LD/Fe3O4 caused the composite hydrogel to strain up to 124 %, with a modulus of elasticity of 21,308 Pa and electrical conductivity as high as 2.3 S•m-1 following the introduction of LD/Fe3O4. Moreover, the PP/LD/Fe3O4 hydrogel's adhesive qualities offered adequate antimicrobial properties and promoted wound healing. These results indicate that the developed electricity-responsive and tissue-adhesive hydrogel dressing offers a candidate to serve as a tissue sealant for wound healing.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos