Dual-Stage Reduction Strategy of Tin Perovskite Enables High Performance Photovoltaics.
Angew Chem Int Ed Engl
; : e202415681, 2024 Sep 26.
Article
en En
| MEDLINE
| ID: mdl-39324407
ABSTRACT
The rapid oxidation of Sn2+ in tin-based perovskite solar cells (TPSCs) restricts their efficiency and stability have been main bottleneck towards further development. This study developed a novel strategy which utilizes thiosulfate ions (S2O32-) in the precursor solution to enable a dual-stage reduction process. In the solution stage, thiosulfate acted as an efficacious reducing agent to reduce Sn4+ to Sn2+, meanwhile, its oxidation products were able to reduce I2 to I- during the film stage. This dual reduction ability effectively inhibited the oxidation of Sn2+ and passivated defects, further promising an excellent stability of the perovskite devices. As a result, thiosulfate-incorporated devices achieved a high efficiency of 14.78% with open-circuit voltage reaching 0.96 V. The stability of the optimized devices achieved a remarkable improvement, maintaining 90% of their initial efficiencies after 628 hours at maximum-power-point (MPP). The findings provid research insights and experimental data support for the sustained dynamic reduction in TPSCs.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Angew Chem Int Ed Engl
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania