Development of a genotoxicity/carcinogenicity assessment method by DNA adductome analysis.
Mutat Res Genet Toxicol Environ Mutagen
; 899: 503821, 2024 Oct.
Article
en En
| MEDLINE
| ID: mdl-39326939
ABSTRACT
Safety evaluation is essential for the development of chemical substances. Since in vivo safety evaluation tests, such as carcinogenesis tests, require long-term observation using large numbers of experimental animals, it is necessary to develop alternative methods that can predict genotoxicity/carcinogenicity in the short term, taking into account the 3Rs (replacement, reduction, and refinement). We established a prediction model of the hepatotoxicity of chemicals using a DNA adductome, which is a comprehensive analysis of DNA adducts that may be used as an indicator of DNA damage in the liver. An adductome was generated with LC-high-resolution accurate mass spectrometer (HRAM) on liver of rats exposed to various chemicals for 24â¯h, based on two independent experimental protocols. The resulting adductome dataset obtained from each independent experiment (experiments 1 and 2) and integrated dataset were analyzed by linear discriminant analysis (LDA) and found to correctly classify the chemicals into the following four categories non-genotoxic/non-hepatocarcinogens (-/-), genotoxic/non-hepatocarcinogens (+/-), non-genotoxic/hepatocarcinogens (-/+), and genotoxic/hepatocarcinogens (+/+), based on their genotoxicity/carcinogenicity properties. A prototype model for predicting the genotoxicity/carcinogenicity of the chemicals was established using machine learning methods (using random forest algorithm). When the prototype genotoxicity/carcinogenicity prediction model was used to make predictions for experiments 1 and 2 as well as the integrated dataset, the correct response rates were 89 % (genotoxicity), 94 % (carcinogenicity) and 87 % (genotoxicity/carcinogenicity) for experiment 1, 47 % (genotoxicity), 62 % (carcinogenicity) and 42 % (genotoxicity/carcinogenicity) for experiment 2, and 52 % (genotoxicity), 62 % (carcinogenicity), and 48 % (genotoxicity/carcinogenicity) for the integrated dataset. To improve the accuracy of the toxicity prediction model, the toxicity label was reconstructed as follows; Pattern 1 when +/+ and -/- chemicals were used from the toxicity labels +/+, +/-, -/+ and -/-; and Pattern 2 when +/+, +/-, and -/+ other than -/- were replaced with the label "Others". As a result, chemicals with only +/+ and -/- toxicity labels were used and the correct response rates were approximately 100 % for the measured data in experiment 1, 53 %-66 % for the data in experiment 2, and 59-73 % for the integrated data, all of which were 10 %-30 % higher compared with the data before the label change. In contrast, when the toxicity labels were replaced with -/- and "Others", they reached nearly 100 % in the measured data from experiment 1, 65 %-75 % in the data from experiment 2, and 70 %-78 % in the integrated data, all of which were 10 %-50 % higher compared with the data before the label change.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Carcinógenos
/
Pruebas de Carcinogenicidad
/
Aductos de ADN
/
Hígado
/
Pruebas de Mutagenicidad
Límite:
Animals
Idioma:
En
Revista:
Mutat Res Genet Toxicol Environ Mutagen
Año:
2024
Tipo del documento:
Article
País de afiliación:
Japón
Pais de publicación:
Países Bajos