An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG 3 encoding a delta 7-sterol-C-5-desaturase from yeast.
Plant J
; 8(3): 407-16, 1995 Sep.
Article
en En
| MEDLINE
| ID: mdl-7550378
The mutant STE 1 was isolated by screening an ethylmethane sulfonate (EMS)-mutagenized population of Arabidopsis thaliana which consisted of 22,000 M2 plants divided into 1100 pools of 20 plants by gas chromatography of sterols extracted from small leaf samples. STE 1 was characterized by the accumulation of three delta 7-sterols concomitantly with the decrease of the three corresponding delta 5-sterols which are the end products of the sterol pathway in wild-type leaves. The structure of these delta 7-sterols was determined after two steps of purification on HPLC, by gas chromatography coupled with mass spectrometry (GC-MS) and proton nuclear magnetic resonance spectrometry (1H-NMR). The accumulation of delta 7-sterols suggested that the mutant is deficient in the activity of the delta 7-sterol-C-5-desaturase. Genetic analysis showed that the accumulation of delta 7-sterols was due to a single recessive nuclear mutation. The mutant line STE 1 was backcrossed four times to the wild-type. The resulting STE 1 plants had wild-type morphology and set seeds normally, suggesting that the delta 7-sterols in STE 1 are good surrogates of physiologically active delta 5-sterols to sustain normal development. STE 1 roots were transformed with the Saccharomyces cerevisiae ERG 3 gene encoding the delta 7-sterol-C-5-desaturase under the control of the CaMV 35S promoter. Seven transgenic STE 1 root-derived calli showed an increase in delta 5-sterols and a concomitant decrease in delta 7-sterols in comparison with STE 1 untransformed root-derived calli. Northern blot analysis using the ERG 3 probe showed a strong expression of ERG 3 in three of the seven transgenic calli. These results suggest that the accumulation of delta 7-sterols in the STE 1 mutant is due to a deficiency of the delta 7-sterol-C-5-desaturation step in the plant sterol biosynthesis pathway.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oxidorreductasas
/
Saccharomyces cerevisiae
/
Esteroles
/
Arabidopsis
/
Genes Fúngicos
/
Mutación
Idioma:
En
Revista:
Plant J
Asunto de la revista:
BIOLOGIA MOLECULAR
/
BOTANICA
Año:
1995
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Reino Unido