Your browser doesn't support javascript.
loading
Outer membrane differences between pathogenic and environmental Yersinia enterocolitica biogroups probed with hydrophobic permeants and polycationic peptides.
Bengoechea, J A; Díaz, R; Moriyón, I.
Afiliación
  • Bengoechea JA; Departamento de Microbiologia, Universidad de Navarra, Pamplona, Spain.
Infect Immun ; 64(12): 4891-9, 1996 Dec.
Article en En | MEDLINE | ID: mdl-8945523
ABSTRACT
Sensitivities to polycationic peptides and EDTA were compared in Yersinia enterocolitica pathogenic and environmental biogroups. As shown by changes in permeability to the fluorescent hydrophobic probe N-phenylnaphthylamine (NPN), the outer membranes (OMs) of pathogenic and environmental strains grown at 26 degrees C in standard broth were more resistant to poly-L-lysine, poly-L-ornithine, melittin, cecropin P1, polymyxin B, and EDTA than Escherichia coli OMs. At 37 degrees C, OMs of pathogenic biogroups were resistant to EDTA and polycations and OMs of environmental strains were resistant to EDTA whereas E. coli OMs were sensitive to both EDTA and polycations. Similar results were found when testing deoxycholate sensitivity after polycation exposure or when isogenic pairs with or without virulence plasmid pYV were compared. With bacteria grown without Ca++ available, OM permeability to NPN was drastically increased in pathogenic but not in environmental strains or E. coli. Under these conditions, OMs of pYV+ and pYV- cells showed small differences in NPN permeability but differences in polycation sensitivity could not be detected by fluorimetry. O1,6 (environmental type) lipopolysaccharide (LPS), but not O3 or O8 LPS, was markedly rough at 37 degrees C, and this could explain the differences in polycation sensitivity. LPSs from serotypes O3 and O8 grown at 37 degrees C were more permeable to NPN than O1,6 LPS, and O8 LPS was resistant to polycation-induced permeabilization. These data suggest that LPSs relate to some but not all the OM differences described. It is hypothesized that the different OM properties of environmental and pathogenic biogroups reflect the adaptation of the latter biogroups to pathogenicity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteínas de la Membrana Bacteriana Externa / Yersinia enterocolitica / Ácido Edético Idioma: En Revista: Infect Immun Año: 1996 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Proteínas de la Membrana Bacteriana Externa / Yersinia enterocolitica / Ácido Edético Idioma: En Revista: Infect Immun Año: 1996 Tipo del documento: Article País de afiliación: España