Your browser doesn't support javascript.
loading
Nonlinear trading models through Sharpe Ratio maximization.
Choey, M; Weigend, A S.
Afiliación
  • Choey M; Advanced Technology Group, Siemens Nixdorf Information Systems, Inc., Burlington, MA 01803, USA. choey@ix.netcom.com
Int J Neural Syst ; 8(4): 417-31, 1997 Aug.
Article en En | MEDLINE | ID: mdl-9730018
While many trading strategies are based on price prediction, traders in financial markets are typically interested in optimizing risk-adjusted performance such as the Sharpe Ratio, rather than the price predictions themselves. This paper introduces an approach which generates a nonlinear strategy that explicitly maximizes the Sharpe Ratio. It is expressed as a neural network model whose output is the position size between a risky and a risk-free asset. The iterative parameter update rules are derived and compared to alternative approaches. The resulting trading strategy is evaluated and analyzed on both computer-generated data and real world data (DAX, the daily German equity index). Trading based on Sharpe Ratio maximization compares favorably to both profit optimization and probability matching (through cross-entropy optimization). The results show that the goal of optimizing out-of-sample risk-adjusted profit can indeed be achieved with this nonlinear approach.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Redes Neurales de la Computación / Dinámicas no Lineales / Modelos Económicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Int J Neural Syst Asunto de la revista: ENGENHARIA BIOMEDICA / INFORMATICA MEDICA Año: 1997 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Singapur
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Redes Neurales de la Computación / Dinámicas no Lineales / Modelos Económicos Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Int J Neural Syst Asunto de la revista: ENGENHARIA BIOMEDICA / INFORMATICA MEDICA Año: 1997 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Singapur