Your browser doesn't support javascript.
loading
A selective sweep in the Spike gene has driven SARS-CoV-2 human adaptation
Lin Kang; Guijuan He; Amanda K. Sharp; Xiaofeng Wang; Anne M. Brown; Pawel Michalak; James Weger-Lucarelli.
Afiliación
  • Lin Kang; Edward Via College of Osteopathic Medicine, Monroe, LA, 71203, USA
  • Guijuan He; School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
  • Amanda K. Sharp; Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA.
  • Xiaofeng Wang; School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.
  • Anne M. Brown; Virginia Tech
  • Pawel Michalak; Edward Via College of Osteopathic Medicine, Monroe, LA, 71203, USA
  • James Weger-Lucarelli; Virginia Tech
Preprint en En | PREPRINT-BIORXIV | ID: ppbiorxiv-431090
Artículo de revista
Un artículo publicado en revista científica está disponible y probablemente es basado en este preprint, por medio del reconocimiento de similitud realizado por una máquina. La confirmación humana aún está pendiente.
Ver artículo de revista
ABSTRACT
SummaryWhile SARS-CoV-2 likely has animal origins1, the viral genetic changes necessary to adapt this animal-derived ancestral virus to humans are largely unknown, mostly due to low levels of sequence polymorphism and the notorious difficulties in experimental manipulations of coronavirus genomes. We scanned more than 182,000 SARS-CoV-2 genomes for selective sweep signatures and found that a distinct footprint of positive selection is located around a non-synonymous change (A1114G; T372A) within the Receptor-Binding Domain of the Spike protein, which likely played a critical role in overcoming species barriers and accomplishing interspecies transmission from animals to humans. Structural analysis indicated that the substitution of threonine with an alanine in SARS-CoV-2 concomitantly removes a predicted glycosylation site at N370, resulting in more favorable binding predictions to human ACE2, the cellular receptor. Using a novel bacteria-free cloning system for manipulating RNA virus genomes, we experimentally validated that this SARS-CoV-2-unique substitution significantly increases replication in human cells relative to its putative ancestral variant. Notably, this mutations impact on virus replication in human cells was much greater than that of the Spike D614G mutant, which has been widely reported to have been selected for during human-to-human transmission2,3.
Licencia
cc_by_nc_nd
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-BIORXIV Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Preprint
Texto completo: 1 Colección: 09-preprints Base de datos: PREPRINT-BIORXIV Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Preprint