Your browser doesn't support javascript.
loading
Role and mechanism of NR1D1 in proliferation and migration of vascular adventitial fibroblasts / 中国药理学通报
Chinese Pharmacological Bulletin ; (12): 537-543, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013950
Biblioteca responsable: WPRO
ABSTRACT
Aim To explore the role and mechanism of nuclear receptor subfamily 1,group D,member 1(NR1D1)in the proliferation and migration of mouse adventitial fibroblasts(AFs). Methods Primary AFs isolated from C57BL/6J mice were cultured. Adenovirus carrying Nr1d1 gene was used to overexpress NR1D1 in AFs. The expression of β-catenin was restored by SKL2001. Proliferating cell nuclear antigen(Ki-67)immunofluorescence staining and CCK-8 staining were used to determine cell proliferation,and scratch test was used to determine cell migration. qPCR was used to determine the mRNA level of Nr1d1. Western blot was used to determine the protein levels of NR1D1 and β-catenin. To investigate the role of NR1D1 in intimal hyperplasia,20 male wild type C57BL/6J mice were randomly divided into sham group,carotid artery endothelial injury,sham+SR9009(NR1D1 agonist)group and carotid artery endothelial injury+SR9009(n=5 in each group). They were treated with DMSO or SR9009(100 mg·kg-1·d-1)via intraperitoneal injection for 14 days after operation,respectively. The degree of carotid intimal hyperplasia was measured by HE staining 28 days after operation. Results NR1D1 overexpression significantly reduced the percentage of Ki-67-positive cells(P<0.01),total cell number(P<0.01)and slowed down the rate of wound-healing(P<0.01). NR1D1 overexpression significantly inhibited the expression of β-catenin(P<0.05). After the expression of β-catenin was restored by SKL2001,the inhibitory effects of NR1D1 overexpression on the proliferation and migration of AFs were abolished(P<0.01). Enhanced activity of NR1D1 significantly ameliorated intimal hyperplasia after carotid endothelial injury(P<0.01). Conclusion NR1D1 may inhibit the proliferation and migration of AFs via suppressing the expression of β-catenin.

Texto completo: Disponible Base de datos: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Pharmacological Bulletin Año: 2023 Tipo del documento: Artículo
Texto completo: Disponible Base de datos: WPRIM (Pacífico Occidental) Idioma: Chino Revista: Chinese Pharmacological Bulletin Año: 2023 Tipo del documento: Artículo
...