Your browser doesn't support javascript.
loading
Molecular mechanism of astragaloside Ⅳ against atherosclerosis by regulating miR-17-5p and PCSK9/VLDLR signal pathway / 中国中药杂志
Zhongguo Zhong Yao Za Zhi ; (24): 492-498, 2022.
Article en Zh | WPRIM | ID: wpr-927994
Biblioteca responsable: WPRO
ABSTRACT
This study explores the regulatory effect of astragaloside Ⅳ on miR-17-5 p and its downstream proprotein convertase subtillisin/kexin type 9(PCSK9)/very low density lipoprotein receptor(VLDLR) signal pathway, aiming at elucidating the mechanism of astragaloside Ⅳ against atherosclerosis(AS). In cell experiment, oxidized low-density lipoprotein(ox-LDL) was used for endothelial cell injury modeling with vascular smooth muscle cells(VSMCs). Then cells were classified into the model group, miR-17-5 p inhibitor group, blank serum group, and astragaloside Ⅳ-containing serum group based on the invention. Afterward, cell viability and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA and protein in cells in each group were detected. In animal experiment, 15 C57 BL/6 mice were used as the control group, and 45 ApoE~(-/-) mice were classified into the model group, miR-17-5 p inhibitor group, and astragaloside Ⅳ group, with 15 mice in each group. After 8 weeks of intervention, the peripheral serum levels of interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α), and the expression of miR-17-5 p, VLDLR, and PCSK9 mRNA in the aorta of mice were detected. The pathological changes of mice in each group were observed. According to the cell experiment, VSMC viability in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was higher than that in the model group(P<0.05). The mRNA and protein expression of miR-17-5 p and VLDLR in VSMCs in the miR-17-5 p inhibitor group and the astragaloside Ⅳ-containing serum group was lower than that in the model group(P<0.05), but the mRNA and protein expression of PCSK9 was higher than that in the model group(P<0.05). As for the animal experiment, the levels of IL-6 and TNF-α in the peripheral serum of the miR-17-5 p inhibitor group and the astragaloside Ⅳ group were lower(P<0.05) and the serum level of IL-10 was higher(P<0.05) than that of the model group. The mRNA expression of miR-17-5 p and VLDLR in the aorta in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group was lower(P<0.05), and PCSK9 mRNA expression was higher(P<0.05) than that in the model group. Pathological observation showed mild AS in the miR-17-5 p inhibitor group and the astragaloside Ⅳ group. In summary, astragaloside Ⅳ can prevent the occurrence and development of AS. The mechanism is that it performs targeted regulation of miR-17-5 p, further affecting the PCSK9/VLDLR signal pathway, inhibiting vascular inflammation, and thus alleviating endothelial cell injury.
Asunto(s)
Palabras clave
Texto completo: 1 Base de datos: WPRIM Asunto principal: Saponinas / Triterpenos / Receptores de LDL / Transducción de Señal / MicroARNs / Aterosclerosis / Proproteína Convertasa 9 / Lipoproteínas LDL Tipo de estudio: Prognostic_studies Límite: Animals Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Año: 2022 Tipo del documento: Article
Texto completo: 1 Base de datos: WPRIM Asunto principal: Saponinas / Triterpenos / Receptores de LDL / Transducción de Señal / MicroARNs / Aterosclerosis / Proproteína Convertasa 9 / Lipoproteínas LDL Tipo de estudio: Prognostic_studies Límite: Animals Idioma: Zh Revista: Zhongguo Zhong Yao Za Zhi Año: 2022 Tipo del documento: Article