Your browser doesn't support javascript.
loading
Comprehensive genetic diagnosis of patients with Duchenne/Becker muscular dystrophy (DMD/BMD) and pathogenicity analysis of splice site variants in the DMD gene.
Yang, Yan-Mei; Yan, Kai; Liu, Bei; Chen, Min; Wang, Li-Ya; Huang, Ying-Zhi; Qian, Ye-Qing; Sun, Yi-Xi; Li, Hong-Ge; Dong, Min-Yue.
Affiliation
  • Yang YM; Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
  • Yan K; Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.
  • Liu B; Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China.
  • Chen M; Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
  • Wang LY; Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.
  • Huang YZ; Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China.
  • Qian YQ; Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
  • Sun YX; Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, China.
  • Li HG; Key Laboratory of Women's Reproductive Health of Zhejiang Province, Hangzhou 310006, China.
  • Dong MY; Department of Reproductive Genetics, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
J Zhejiang Univ Sci B ; 20(9): 753-765, 2019.
Article in En | MEDLINE | ID: mdl-31379145
ABSTRACT
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are caused by mutations in the DMD gene. The aim of this study is to identify pathogenic DMD variants in probands and reduce the risk of recurrence of the disease in affected families. Variations in 100 unrelated DMD/BMD patients were detected by multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Pathogenic variants in DMD were successfully identified in all cases, and 11 of them were novel. The most common mutations were intragenic deletions (69%), with two hotspots located in the 5' end (exons 2-19) and the central of the DMD gene (exons 45-55), while point mutations were observed in 22% patients. Further, c.1149+1G>A and c.1150-2A>G were confirmed by hybrid minigene splicing assay (HMSA). This two splice site mutations would lead to two aberrant DMD isoforms which give rise to severely truncated protein. Therefore, the clinical use of MLPA, NGS, and HMSA is an effective strategy to identify variants. Importantly, eight embryos were terminated pregnancies according to prenatal diagnosis and a healthy boy was successfully delivered by preimplantation genetic diagnosis (PGD). Early and accurate genetic diagnosis is essential for prenatal diagnosis/PGD to reduce the risk of recurrence of DMD in affected families.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Binding Sites / Alternative Splicing / Muscular Dystrophy, Duchenne Type of study: Diagnostic_studies Limits: Female / Humans / Male / Pregnancy Language: En Journal: J Zhejiang Univ Sci B Journal subject: BIOLOGIA / MEDICINA Year: 2019 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Binding Sites / Alternative Splicing / Muscular Dystrophy, Duchenne Type of study: Diagnostic_studies Limits: Female / Humans / Male / Pregnancy Language: En Journal: J Zhejiang Univ Sci B Journal subject: BIOLOGIA / MEDICINA Year: 2019 Document type: Article Affiliation country: