Metabolomics analysis of annual killifish (Austrofundulus limnaeus) embryos during aerial dehydration stress.
Physiol Genomics
; 52(9): 408-422, 2020 09 01.
Article
in En
| MEDLINE
| ID: mdl-32776802
The annual killifish, Austrofundulus limnaeus, survives in ephemeral ponds in the coastal deserts of Venezuela. Persistence through the dry season is dependent on drought-resistant eggs embedded in the pond sediments during the rainy season. The ability of these embryos to enter drastic metabolic dormancy (diapause) during normal development enables A. limnaeus to survive conditions lethal to most other aquatic vertebrates; critical to the survival of the species is the ability of embryos to survive months and perhaps years without access to liquid water. Little is known about the molecular mechanisms that aid in survival of the dry season. This study aims to gain insight into the mechanisms facilitating survival of dehydration stress due to aerial exposure by examining metabolite profiles of dormant and developing embryos. There is strong evidence for unique metabolic profiles based on developmental stage and length of aerial exposure. Actively developing embryos exhibit more robust changes; however, dormant embryos respond in an active manner and significantly alter their metabolic profile. A number of metabolites accumulate in aerial-exposed embryos that may play an important role in survival, including the identification of known antioxidants and neuroprotectants. In addition, a number of unique metabolites not yet discussed in the dehydration literature are identified, such as lanthionine and 2-hydroxyglutarate. Despite high oxygen availability, embryos accumulate the anaerobic end product lactate. This paper offers an overview of the metabolic changes occurring that may support embryonic survival during dehydration stress due to aerial incubation, which can be functionally tested using genetic and pharmacological approaches.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oxygen
/
Fundulidae
/
Dehydration
Limits:
Animals
Language:
En
Journal:
Physiol Genomics
Journal subject:
BIOLOGIA MOLECULAR
Year:
2020
Document type:
Article
Country of publication: