Chemo-mechanical diffusion waves explain collective dynamics of immune cell podosomes.
Nat Commun
; 14(1): 2902, 2023 05 22.
Article
in En
| MEDLINE
| ID: mdl-37217555
Immune cells, such as macrophages and dendritic cells, can utilize podosomes, mechanosensitive actin-rich protrusions, to generate forces, migrate, and patrol for foreign antigens. Individual podosomes probe their microenvironment through periodic protrusion and retraction cycles (height oscillations), while oscillations of multiple podosomes in a cluster are coordinated in a wave-like fashion. However, the mechanisms governing both the individual oscillations and the collective wave-like dynamics remain unclear. Here, by integrating actin polymerization, myosin contractility, actin diffusion, and mechanosensitive signaling, we develop a chemo-mechanical model for podosome dynamics in clusters. Our model reveals that podosomes show oscillatory growth when actin polymerization-driven protrusion and signaling-associated myosin contraction occur at similar rates, while the diffusion of actin monomers drives wave-like coordination of podosome oscillations. Our theoretical predictions are validated by different pharmacological treatments and the impact of microenvironment stiffness on chemo-mechanical waves. Our proposed framework can shed light on the role of podosomes in immune cell mechanosensing within the context of wound healing and cancer immunotherapy.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Podosomes
Type of study:
Prognostic_studies
Language:
En
Journal:
Nat Commun
Journal subject:
BIOLOGIA
/
CIENCIA
Year:
2023
Document type:
Article
Affiliation country:
Country of publication: