Your browser doesn't support javascript.
loading
SETBP1 is dispensable for normal and malignant hematopoiesis.
Tanaka, Atsushi; Nishimura, Koutarou; Saika, Wataru; Kon, Ayana; Koike, Yui; Tatsumi, Hiromi; Takeda, June; Nomura, Masaki; Zang, Weijia; Nakayama, Manabu; Matsuda, Masashi; Yamazaki, Hiromi; Fukumoto, Miki; Ito, Hiromi; Hayashi, Yasutaka; Kitamura, Toshio; Kawamoto, Hiroshi; Takaori-Kondo, Akifumi; Koseki, Haruhiko; Ogawa, Seishi; Inoue, Daichi.
Affiliation
  • Tanaka A; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Nishimura K; Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
  • Saika W; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  • Kon A; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Koike Y; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Tatsumi H; Department of Hematology, Shiga University of Medical Science, Shiga, Japan.
  • Takeda J; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  • Nomura M; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Zang W; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
  • Nakayama M; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  • Matsuda M; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Yamazaki H; Facility for iPS Cell Therapy, CiRA Foundation, Kyoto, Japan.
  • Fukumoto M; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Ito H; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
  • Hayashi Y; Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan.
  • Kitamura T; RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.
  • Kawamoto H; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Takaori-Kondo A; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Koseki H; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Ogawa S; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
  • Inoue D; Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan.
Leukemia ; 37(9): 1802-1811, 2023 09.
Article in En | MEDLINE | ID: mdl-37464069
ABSTRACT
SETBP1 is a potential epigenetic regulator whose hotspot mutations preventing proteasomal degradation are recurrently detected in myeloid malignancies with poor prognosis. It is believed that the mutant SETBP1 exerts amplified effects of wild-type SETBP1 rather than neomorphic functions. This indicates that dysregulated quantitative control of SETBP1 would result in the transformation of hematopoietic cells. However, little is known about the roles of endogenous SETBP1 in malignant and normal hematopoiesis. Thus, we integrated the analyses of primary AML and healthy samples, cancer cell lines, and a newly generated murine model, Vav1-iCre;Setbp1fl/fl. Despite the expression in long-term hematopoietic stem cells, SETBP1 depletion in normal hematopoiesis minimally alters self-renewal, differentiation, or reconstitution in vivo. Indeed, its loss does not profoundly alter transcription or chromatin accessibilities. Furthermore, although AML with high SETBP1 mRNA is associated with genetic and clinical characteristics for dismal outcomes, SETBP1 is dispensable for the development or maintenance of AML. Contrary to the evidence that SETBP1 mutations are restricted to myeloid malignancies, dependency on SETBP1 mRNA expression is not observed in AML. These unexpected results shed light on the unrecognized idea that a physiologically nonessential gene can act as an oncogene when the machinery of protein degradation is damaged.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Leukemia, Myeloid, Acute / Hematopoiesis Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Leukemia Journal subject: HEMATOLOGIA / NEOPLASIAS Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Leukemia, Myeloid, Acute / Hematopoiesis Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Leukemia Journal subject: HEMATOLOGIA / NEOPLASIAS Year: 2023 Document type: Article Affiliation country:
...