Your browser doesn't support javascript.
loading
Treatment Effect on Brain Atrophy Correlates with Treatment Effect on Cognition in Multiple Sclerosis.
Sormani, Maria Pia; Schiavetti, Irene; Ponzano, Marta; Colato, Elisa; De Stefano, Nicola.
Affiliation
  • Sormani MP; Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
  • Schiavetti I; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
  • Ponzano M; Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
  • Colato E; Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy.
  • De Stefano N; Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA.
Ann Neurol ; 94(5): 925-932, 2023 11.
Article in En | MEDLINE | ID: mdl-37496368
OBJECTIVE: The purpose of this study was to evaluate the extent to which treatment effect on magnetic resonance imaging (MRI)-derived measures of brain atrophy and focal lesions can mediate, at the trial level, the treatment effect on cognitive outcomes in multiple sclerosis (MS). METHODS: We collected all published randomized clinical trials in MS lasting at least 2 years and including as end points: active MRI lesions (defined as new/enlarging T2 lesions), brain atrophy (defined as a change in brain volume between month 12 and month 24), and change in cognitive performance (assessed by the Paced Auditory Serial Addition Test [PASAT]). Relative reductions were used to quantify the treatment effect on MRI markers (lesions and atrophy), whereas the standardized mean difference (Hedges g) between baseline and follow-up cognitive assessment was used to quantify the treatment effects on cognition. A linear regression, weighted for trial size, was used to assess the relationship between the treatment effects on MRI markers and cognition. RESULTS: Fourteen trials including more than 8,813 patients with MS were included in the meta-regression. Treatment effect on cognition was strongly associated with the treatment effect on brain atrophy (R2 = 0.79, p < 0.001), but was not correlated with the treatment effect on active MRI lesions (R2 = 0.16, p = 0.14). INTERPRETATION: Results reported here suggest that brain atrophy, a well-established MRI marker in MS clinical trials, can be used as a main outcome for clinical trials with drugs targeting cognitive impairment and neurodegeneration. ANN NEUROL 2023;94:925-932.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Central Nervous System Diseases / Cognitive Dysfunction / Multiple Sclerosis / Nervous System Malformations Type of study: Clinical_trials Limits: Humans Language: En Journal: Ann Neurol Year: 2023 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Central Nervous System Diseases / Cognitive Dysfunction / Multiple Sclerosis / Nervous System Malformations Type of study: Clinical_trials Limits: Humans Language: En Journal: Ann Neurol Year: 2023 Document type: Article Affiliation country: Country of publication: