Your browser doesn't support javascript.
loading
Secondary organic aerosols from oxidation of 1-methylnaphthalene: Yield, composition, and volatility.
Xiang, Wang; Wang, Weigang; Hou, Chunyan; Fan, CiCi; Lei, Ting; Li, Junling; Ge, Maofa.
Affiliation
  • Xiang W; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
  • Wang W; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
  • Hou C; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
  • Fan C; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
  • Lei T; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
  • Li J; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
  • Ge M; State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Chemistry Academy of Sciences Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
Sci Total Environ ; 918: 170379, 2024 Mar 25.
Article in En | MEDLINE | ID: mdl-38280593
ABSTRACT
Alkyl-PAHs (APAHs) have been identified worldwide, which could rapidly react with chlorine and OH radicals in the atmosphere. In this study, a comprehensive investigation is conducted for SOA generated by a representative alkyl-naphthalene (1-methyl naphthalene, 1-MN) initiated by Cl, including yield, chemical composition, and volatility of SOA. To better understand 1-MN atmospheric oxidation, reaction mechanisms of 1MN with Cl atoms and OH radicals are proposed and compared under different nitrogen oxides (NOx) conditions. The SOA yields are comparable for Cl-initiated and OH-initiated reactions under high NOx conditions but increased in Cl-initiated reactions under low NOx conditions. The compounds with ten carbons are more abundant in Cl-initiated SOA, while compounds with nine carbons have higher intensity, suggesting that Cl caused ring-retained and alkyl-lost products and OH produces ring-broken and alkyl-retained compounds. The volatility of SOA is remarkably low, and SOA formed from Cl oxidation is slightly higher than that from OH oxidation. These results reveal that 1MN-derived SOA with OH and Cl radicals would have different physical-chemical properties and may play an important role in air quality and health effects.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2024 Document type: Article Country of publication: