Your browser doesn't support javascript.
loading
The catalytic subunit of type 2A protein phosphatase negatively regulates conidiation and melanin biosynthesis in Setosphaeria turcica.
Li, Pan; Shen, Shen; Jia, Jingzhe; Sun, Hehe; Zhu, Hang; Wei, Ning; Yu, Bo; Sohail, Aamir; Wu, Di; Zeng, Fanli; Hao, Zhimin; Dong, Jingao.
Affiliation
  • Li P; State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China.
  • Shen S; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Jia J; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Sun H; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Zhu H; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Wei N; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Yu B; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Sohail A; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Wu D; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071001, China.
  • Zeng F; State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Co
  • Hao Z; State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Co
  • Dong J; State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Hebei 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, China. Electronic address: shmdjg@hebau.edu.cn.
Int J Biol Macromol ; 266(Pt 2): 131149, 2024 May.
Article in En | MEDLINE | ID: mdl-38556232
ABSTRACT
Northern corn leaf blight caused by Setosphaeria turcica is a major fungal disease responsible for significant reductions in maize yield worldwide. Eukaryotic type 2A protein phosphatase (PP2A) influences growth and virulence in a number of pathogenic fungi, but little is known about its roles in S. turcica. Here, we functionally characterized S. turcica StPP2A-C, which encodes the catalytic C subunit of StPP2A. StPP2A-C deletion slowed colony growth, conidial germination, and appressorium formation but increased conidiation, melanin biosynthesis, glycerol content, and disease lesion size on maize. These effects were associated with expression changes in genes related to calcium signaling, conidiation, laccase activity, and melanin and glycerol biosynthesis, as well as changes in intra- and extracellular laccase activity. A pull-down screen for candidate StPP2A-c interactors revealed an interaction between StPP2A-c and StLac1. Theoretical modeling and yeast two-hybrid experiments confirmed that StPP2A-c interacted specifically with the copper ion binding domain of StLac1 and that Cys267 of StPP2A-c was required for this interaction. StPP2A-C expression thus appears to promote hyphal growth and reduce pathogenicity in S. turcica, at least in part by altering melanin synthesis and laccase activity; these insights may ultimately support the development of novel strategies for biological management of S. turcica.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Spores, Fungal / Gene Expression Regulation, Fungal / Catalytic Domain / Protein Phosphatase 2 / Melanins Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Spores, Fungal / Gene Expression Regulation, Fungal / Catalytic Domain / Protein Phosphatase 2 / Melanins Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: