Your browser doesn't support javascript.
loading
Hydrophobic substrate binding pocket remodeling of echinocandin B deacylase based on multi-dimensional rational design.
Tang, Heng; Zhu, Han-Yue; Huang, Yin-Feng; Wu, Ze-Yu; Zou, Shu-Ping; Liu, Zhi-Qiang; Zheng, Yu-Guo.
Affiliation
  • Tang H; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Zhu HY; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Huang YF; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Wu ZY; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Zou SP; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Liu ZQ; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
  • Zheng YG; National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Ha
Int J Biol Macromol ; 267(Pt 1): 131473, 2024 May.
Article in En | MEDLINE | ID: mdl-38614185
ABSTRACT
Actinoplanes utahensis deacylase (AAC)-catalyzed deacylation of echinocandin B (ECB) is a promising method for the synthesis of anidulafungin, the newest of the echinocandin antifungal agents. However, the low activity of AAC significantly limits its practical application. In this work, we have devised a multi-dimensional rational design strategy for AAC, conducting separate analyses on the substrate-binding pocket's volume, curvature, and length. Furthermore, we quantitatively analyzed substrate properties, particularly on hydrophilic and hydrophobic. Accordingly, we tailored the linoleic acid-binding pocket of AAC to accommodate the extended long lipid chain of ECB. By fine-tuning the key residues, the resulting AAC mutants can accommodate the ECB lipid chain with a lower curvature binding pocket. The D53A/I55F/G57M/F154L/Q661L mutant (MT) displayed 331 % higher catalytic efficiency than the wild-type (WT) enzyme. The MT product conversion was 94.6 %, reaching the highest reported level. Utilizing a multi-dimensional rational design for a customized mutation strategy of the substrate-binding pocket is an effective approach to enhance the catalytic efficiency of enzymes in handling complicated substrates.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Fungal Proteins / Echinocandins / Hydrophobic and Hydrophilic Interactions Language: En Journal: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Fungal Proteins / Echinocandins / Hydrophobic and Hydrophilic Interactions Language: En Journal: Int J Biol Macromol / Int. j. biol. macromol / International journal of biological macromolecules Year: 2024 Document type: Article Country of publication: