Your browser doesn't support javascript.
loading
DDX39B protects against sorafenib-induced ferroptosis by facilitating the splicing and cytoplasmic export of GPX4 pre-mRNA in hepatocellular carcinoma.
Li, Qin; Yuan, Hang; Zhao, Gang; Ou, Deqiong; Zhang, Jie; Li, Liang; Li, Siqi; Feng, Tianyu; Gu, Rui; Kou, Qiming; Wang, Qijing; Li, Shan; Wang, Guanru; Zhao, Minghui; Yu, Huayang; Qu, Jie; Lin, Ping; Li, Kai.
Affiliation
  • Li Q; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Yuan H; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Zhao G; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Ou D; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Zhang J; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Li L; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Li S; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Feng T; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Gu R; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Kou Q; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Wang Q; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Li S; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Wang G; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Zhao M; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Yu H; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Qu J; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
  • Lin P; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China. Electronic address: linping@scu.edu.cn.
  • Li K; Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China. Electronic address: likai@scu.edu.cn.
Biochem Pharmacol ; 225: 116251, 2024 07.
Article in En | MEDLINE | ID: mdl-38701867
ABSTRACT
Hepatocellular carcinoma (HCC) is the main histological subtype of primary liver cancer and remains one of the most common solid malignancies globally. Ferroptosis was recently defined as an iron-catalyzed form of regulated necrosis. Because cancer cells exhibit higher iron requirements than noncancer cells, treatment with ferroptosis-inducing compounds may be a feasible strategy for cancer therapy. However, cancer cells develop acquired resistance to evade ferroptosis, and the mechanisms responsible for ferroptosis resistance are not fully clarified. In the current study, we reported that DDX39B was downregulated during sorafenib-induced ferroptosis in a dose- and time-dependent manner. Exogenous introduction of DDX39B ensured the survival of HCC cells upon exposure to sorafenib, while the opposite phenomenon was observed in DDX39B-silenced HCC cells. Mechanistically, we demonstrated that DDX39B increased GPX4 levels by promoting the splicing and cytoplasmic translocation of GPX4 pre-mRNA, which was sufficient to detoxify sorafenib-triggered excess lipid ROS production, lipid peroxidation accumulation, ferrous iron levels, and mitochondrial damage. Inhibition of DDX39B ATPase activity by CCT018159 repressed the splicing and cytoplasmic export of GPX4 pre-mRNA and synergistically assisted sorafenib-induced ferroptotic cell death in HCC cells. Taken together, our data uncover a novel role for DDX39B in ferroptosis resistance by modulating the maturation of GPX4 mRNA via a posttranscriptional approach and suggest that DDX39B inhibition may be a promising therapeutic strategy to enhance the sensitivity and vulnerability of HCC cells to sorafenib.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA Precursors / Carcinoma, Hepatocellular / DEAD-box RNA Helicases / Sorafenib / Ferroptosis / Phospholipid Hydroperoxide Glutathione Peroxidase / Liver Neoplasms / Antineoplastic Agents Limits: Animals / Humans / Male Language: En Journal: Biochem Pharmacol Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA Precursors / Carcinoma, Hepatocellular / DEAD-box RNA Helicases / Sorafenib / Ferroptosis / Phospholipid Hydroperoxide Glutathione Peroxidase / Liver Neoplasms / Antineoplastic Agents Limits: Animals / Humans / Male Language: En Journal: Biochem Pharmacol Year: 2024 Document type: Article Affiliation country: Country of publication: