Your browser doesn't support javascript.
loading
BnaC06.WIP2-BnaA09.STM transcriptional regulatory module promotes leaf lobe formation in Brassica napus.
He, Shuangcheng; Zhi, Fang; Ge, Ankang; Liao, Yuxin; Li, Ke; Min, Yuanchang; Wei, Shihao; Peng, Danshuai; Guo, Yuan; Liu, Zijin; Chen, Mingxun.
Affiliation
  • He S; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Zhi F; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Ge A; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Liao Y; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Li K; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Min Y; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Wei S; Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
  • Peng D; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Guo Y; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Liu Z; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Chen M; State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address: cmx786
Int J Biol Macromol ; 271(Pt 1): 132544, 2024 Jun.
Article in En | MEDLINE | ID: mdl-38782318
ABSTRACT
The lobed leaves of rapeseed (Brassica napus L.) offer significant advantages in dense planting, leading to increased yield. Although AtWIP2, a C2H2 zinc finger transcription factor, acts as a regulator of leaf development in Arabidopsis thaliana, the function and regulatory mechanisms of BnaWIP2 in B. napus remain unclear. Here, constitutive expression of the BnaC06.WIP2 paralog, predominantly expressed in leaf serrations, produced lobed leaves in both A. thaliana and B. napus. We demonstrated that BnaC06.WIP2 directly repressed the expression of BnaA01.TCP4, BnaA03.TCP4, and BnaC03.TCP4 and indirectly inhibited the expression of BnaA05.BOP1 and BnaC02.AS2 to promote leaf lobe formation. On the other hand, we discovered that BnaC06.WIP2 modulated the levels of endogenous gibberellin, cytokinin, and auxin, and controlled the auxin distribution in B. napus leaves, thus accelerating leaf lobe formation. Meanwhile, we revealed that BnaA09.STM physically interacted with BnaC06.WIP2, and ectopic expression of BnaA09.STM generated smaller and lobed leaves in B. napus. Furthermore, we found that BnaC06.WIP2 and BnaA09.STM synergistically promoted leaf lobe formation through forming transcriptional regulatory module. Collectively, our findings not only facilitate in-depth understanding of the regulatory mechanisms underlying lobed leaf formation, but also are helpful for guiding high-density breeding practices through improving leaf morphology in B. napus.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Transcription Factors / Plant Leaves / Gene Expression Regulation, Plant / Brassica napus Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Transcription Factors / Plant Leaves / Gene Expression Regulation, Plant / Brassica napus Language: En Journal: Int J Biol Macromol Year: 2024 Document type: Article Affiliation country: