Your browser doesn't support javascript.
loading
Spinal histamine H4 receptor mediates chronic pruritus via p-ERK in acetone-ether-water (AEW)-induced dry skin mice.
Wang, Ting-Ting; Li, Zi-Yang; Hu, Dan-Dan; Xu, Xian-Yun; Song, Ning-Jing; Li, Gang-Qiang; Zhang, Ling.
Affiliation
  • Wang TT; Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.
  • Li ZY; Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China.
  • Hu DD; Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.
  • Xu XY; Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China.
  • Song NJ; Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai, China.
  • Li GQ; Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China.
  • Zhang L; Laboratory of Sensory Neurobiology, Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China.
Exp Dermatol ; 33(7): e15128, 2024 Jul.
Article in En | MEDLINE | ID: mdl-38973249
ABSTRACT
Dry skin is common to many pruritic diseases and is difficult to improve with oral traditional antihistamines. Recently, increasing evidence indicated that histamine H4 receptor (H4R) plays an important role in the occurrence and development of pruritus. Extracellular signal-regulated kinase (ERK) phosphorylation activation in the spinal cord mediates histamine-induced acute and choric itch. However, whether the histamine H4 receptor regulates ERK activation in the dry skin itch remains unclear. In the study, we explore the role of the histamine H4 receptor and p-ERK in the spinal cord in a dry skin mouse model induced by acetone-ether-water (AEW). q-PCR, Western blot, pharmacology and immunofluorescence  were applied in the study. We established a dry skin itch model by repeated application of AEW on the nape of neck in mice. The AEW mice showed typically dry skin histological change and persistent spontaneous scratching behaviour. Histamine H4 receptor, instead of histamine H1 receptor, mediated spontaneous scratching behaviour in AEW mice. Moreover, c-Fos and p-ERK expression in the spinal cord neurons were increased and co-labelled with GRPR-positive neurons in AEW mice. Furthermore, H4R agonist 4-methyhistamine dihydrochloride (4-MH)induced itch. Both 4-MH-induced itch and the spontaneous itch in AEW mice were blocked by p-ERK inhibitor U0126. Finally, intrathecal H4R receptor antagonist JNJ7777120 inhibited spinal p-ERK expression in AEW mice. Our results indicated that spinal H4R mediates itch via ERK activation in the AEW-induced dry skin mice.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acetone / Pruritus / Spinal Cord / Extracellular Signal-Regulated MAP Kinases / Receptors, Histamine H4 Limits: Animals Language: En Journal: Exp Dermatol Journal subject: DERMATOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acetone / Pruritus / Spinal Cord / Extracellular Signal-Regulated MAP Kinases / Receptors, Histamine H4 Limits: Animals Language: En Journal: Exp Dermatol Journal subject: DERMATOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication: