Your browser doesn't support javascript.
loading
Euphorbia factor L2 alleviated gouty inflammation by specifically suppressing both the priming and activation of NLRP3 inflammasome.
Li, Yanhong; Zhuang, Yuqing; Chen, Yuehong; Wang, Guan; Tang, Zhigang; Zhong, Yutong; Zhang, Yuanyuan; Wu, Liang; Ji, Xing; Zhang, Qiuping; Pan, Bin; Luo, Yubin.
Affiliation
  • Li Y; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Zhuang Y; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Chen Y; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Wang G; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Provinc
  • Tang Z; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Zhong Y; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Zhang Y; Sichuan Institute of Food Inspection, Chengdu, Sichuan, China.
  • Wu L; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Ji X; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Zhang Q; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
  • Pan B; Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, Shandong, China.
  • Luo Y; Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China. Electronic address: luoyubin2016@163.com.
Int Immunopharmacol ; 138: 112598, 2024 Sep 10.
Article in En | MEDLINE | ID: mdl-38981223
ABSTRACT
Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Euphorbia / Inflammasomes / NLR Family, Pyrin Domain-Containing 3 Protein / Anti-Inflammatory Agents Limits: Animals / Humans / Male Language: En Journal: Int Immunopharmacol Journal subject: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Euphorbia / Inflammasomes / NLR Family, Pyrin Domain-Containing 3 Protein / Anti-Inflammatory Agents Limits: Animals / Humans / Male Language: En Journal: Int Immunopharmacol Journal subject: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Year: 2024 Document type: Article Affiliation country: Country of publication: