Long term measurements of aerosol mass concentration with optical particle counters: Discrepancies with plausible reasons.
Chemosphere
; 363: 142949, 2024 Sep.
Article
in En
| MEDLINE
| ID: mdl-39067825
ABSTRACT
Gravimetry-based direct measurements of mass concentration require offline analysis which is not suited for field campaigns. Hence such campaigns rely on the estimation of mass concentration by indirect methods mostly calibrated in controlled laboratory conditions. Optical particle counter (OPC) employs algorithms converting the measured number concentration to mass concentration using appropriate conversion factors. The accuracy of such conversion has not been validated for widely varying atmospheric conditions. This study compares the mass concentration estimated by OPC with those directly obtained from gravimetry-based instruments for outdoor samples collected in Bathinda City, Punjab, India from January 2022 to November 2023. The difference in the gravimetrically measured and OPC predicted values quantified in terms of ratios (gravimetric to optically estimated mass concentration), came out to be 1.42 ± 0.77, 0.99 ± 0.51, and 1.17 ± 0.58 for PM10, PM2.5 and PM1, respectively. This difference when estimated with the back-up filter of OPC itself (C Factor), was 1.37 ± 0.66. More than half of the samples showed ratios outside the 0.8-1.2 range thus indicating under or over-estimation in the OPC predicted values. The probable role of variation in density, shape, and refractive index of atmospheric aerosol particles towards the observed inaccuracy of estimated mass concentration has been highlighted. In the absence of clear guidelines and protocols, the study suggests ways to improve the accuracy via periodic measurement of the C Factor and/or incorporating calibration factors in such measurements.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Particle Size
/
Environmental Monitoring
/
Aerosols
/
Air Pollutants
/
Particulate Matter
Country/Region as subject:
Asia
Language:
En
Journal:
Chemosphere
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: