Advancing Myocardial Infarction Treatment: Harnessing Multi-Layered Recellularized Cardiac Patches with Fetal Myocardial Scaffolds and Acellular Amniotic Membrane.
Cardiovasc Eng Technol
; 2024 Aug 12.
Article
in En
| MEDLINE
| ID: mdl-39133349
ABSTRACT
PURPOSE:
Myocardial infarction (MI) is a leading cause of irreversible functional cardiac tissue loss, requiring novel regenerative strategies. This study assessed the potential therapeutic efficacy of recellularized cardiac patches, incorporating fetal myocardial scaffolds with rat fetal cardiomyocytes and acellular human amniotic membrane, in adult Wistar rat models of MI.METHODS:
Decellularized myocardial tissue was obtained from 14 to 16 week-old human fetuses that had been aborted. Chemical detergents (0.1% EDTA and 0.2% sodium dodecyl sulfate) were used to prepare the fetal extracellular matrix (ECM), which was characterized for bio-scaffold microstructure and biocompatibility via scanning electron microscopy (SEM) and MTT assay, respectively. Neonatal cardiomyocytes were extracted from the ventricles of one-day-old Wistar rats' littermates and characterized through immunostaining against Connexin-43 and α-smooth muscle actin. The isolated cells were seeded onto decellularized tissues and covered with decellularized amniotic membrane. Sixteen healthy adult Wistar rats were systematically allocated to control and MI groups. MI was induced via arterial ligation. Fourteen days post-operation, the MI group was received the engineered patches. Following a two-week post-implantation period, the animals were euthanized, and the hearts were harvested for the graft evaluation.RESULTS:
Histological analysis, DAPI staining, and ultra-structural examination corroborated the successful depletion of cellular elements, while maintaining the integrity of the fetal ECM and architecture. Subsequent histological and immunohistochemichal (IHC) evaluations confirmed effective cardiomyocyte seeding on the scaffolds. The application of these engineered patches in MI models resulted in increased angiogenesis, reduced fibrosis, and restricted scar tissue formation, with the implanted cardiomyocytes remaining viable at graft sites, indicating prospective in vivo cell viability.CONCLUSIONS:
This study suggests that multi-layered recellularized cardiac patches are a promising surgical intervention for myocardial infarction, showcasing significant potential by promoting angiogenesis, mitigating fibrosis, and minimizing scar tissue formation in MI models. These features are pivotal for enhancing the therapeutic outcomes in MI patients, focusing on the restoration of the myocardial structure and function post-infarction.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Cardiovasc Eng Technol
Year:
2024
Document type:
Article
Affiliation country:
Country of publication: