Your browser doesn't support javascript.
loading
Comprehensive exploration of a traditional Chinese medicinal plant of Magnolia officinalis based on high-coverage mass spectrometry and multidimensional chemical-biological analysis.
Wang, Wen-Yu; Song, Ya-Mei; Zhang, Jia-Nuo; Zhao, Ming-Yue; Pei, Wen-Han; Zhang, Hui; Yin, Hai-Bo; Xu, Zhi-Li; Xin, Gui-Zhong; Xie, Ming; Kang, Ting-Guo; Chen, Yue-Hua; Song, Hui-Peng.
Affiliation
  • Wang WY; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Song YM; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Zhang JN; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Zhao MY; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Pei WH; Macau University of Science and Technology, Macau 999078, China.
  • Zhang H; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Yin HB; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Xu ZL; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Xin GZ; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
  • Xie M; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Kang TG; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
  • Chen YH; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China. Electronic address: chenyuehua527@126.com.
  • Song HP; Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China. Electronic address: songhuipeng15@163.com.
Article in En | MEDLINE | ID: mdl-39208603
ABSTRACT
Magnolia bark is a traditional Chinese medicine used for hypoglycaemia. With the widespread use of Magnolia bark, its resources are facing a serious shortage. To address this issue, a strategy based on high-coverage mass spectrometry (HCMS) and multidimensional chemical-biological analysis (MCBA) was proposed for the comprehensive exploration of Magnolia officinalis which is the main source of Magnolia bark. The strategy is divided into three main steps. In the first step, the stem bark, stem xylem, root bark, root xylem, leaf and rootlet of Magnolia officinalis were comprehensively analyzed using high-coverage mass spectrometry. In the second step, multivariate statistical analysis was used to explore the heterogeneity of the six parts and detect differential chemical components. In the third step, a combination of experimental screening and molecular docking was used to explore α-glucosidase inhibitors from Magnolia officinalis. Multidimensional chemical-biological analysis (MCBA) of Magnolia officinalis was achieved by combining the last two steps. Finally, a total of 103 compounds were identified from the whole plant of Magnolia officinalis. Differential components of stem bark, stem xylem, leaf, root bark, root xylem and rootlet were systematically revealed. A pair of positional isomers, namely magnolol and honokiol, were found to be α-glucosidase inhibitors. The activity of their combination is superior to that of each single compound, indicating that magnolol and honokiol are in a synergistic relationship. This strategy contributes to comprehensive exploitation of functional plants and effective alleviation of resource shortage. This study also provides a research paradigm for other similar traditional Chinese medicinal plants.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Mass Spectrometry / Magnolia Language: En Journal: J Chromatogr B Analyt Technol Biomed Life Sci Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Mass Spectrometry / Magnolia Language: En Journal: J Chromatogr B Analyt Technol Biomed Life Sci Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: Country of publication: