Your browser doesn't support javascript.
loading
Co-treatment of municipal solid waste incineration fly ash and alumina-/silica-containing waste: A critical review.
Yang, Daokui; Kow, Kien-Woh; Wang, Wenlong; Meredith, Will; Zhang, Guanlin; Mao, Yanpeng; Xu, Mengxia.
Affiliation
  • Yang D; Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, Zhejiang, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 31
  • Kow KW; Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, Zhejiang, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 31
  • Wang W; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong Univers
  • Meredith W; Faculty of Engineering, University of Nottingham, Nottingham, England, UK.
  • Zhang G; Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, Zhejiang, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 31
  • Mao Y; National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong Univers
  • Xu M; Department of Chemical and Environmental Engineering, and New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, Zhejiang, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 31
J Hazard Mater ; 479: 135677, 2024 Nov 05.
Article in En | MEDLINE | ID: mdl-39226688
ABSTRACT
Municipal solid waste incineration fly ash (MSWI-FA) is a hazardous by-product of the incineration process, characterized by elevated levels of heavy metals, chlorides, and dioxins. With a composition high in calcium but low in silicon/aluminum, MSWI-FA exhibits a poor immobilization effect, high energy demands, and limited pozzolanic activity when it is disposed of or reutilized alone. Conversely, alumina-/silica-containing waste (ASW) presents a chemical composition rich in SiO2 and/or Al2O3, offering an opportunity for synergistic treatment with MSWI-FA to facilitate its harmless disposal and resource recovery. Despite the growing interest in co-treatment of MSWI-FA and ASW in recent years, a comprehensive evaluation of ASW's roles in this process remains absent from the existing literature. Therefore, this study endeavors to examine the advancement in the co-treatment of MSWI-FA and ASW, with the focus on three key aspects, i.e., elucidating the immobilization mechanisms by which ASW improves the solidification/stabilization of MSWI-FA, exploring the synergies between MSWI-FA and ASW in various thermal and mechanochemical treatments, and highlighting the benefits of incorporating ASW in the production of MSWI-FA-based building materials. Additionally, in the pursuit of sustainable solid waste management, this review identifies research gaps and delineates future prospects for the co-treatment of MSWI-FA and ASW.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Hazard Mater Journal subject: SAUDE AMBIENTAL Year: 2024 Document type: Article Country of publication: