Your browser doesn't support javascript.
loading
Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: assessment in two blind tests.
Oldziej, S; Czaplewski, C; Liwo, A; Chinchio, M; Nanias, M; Vila, J A; Khalili, M; Arnautova, Y A; Jagielska, A; Makowski, M; Schafroth, H D; Kazmierkiewicz, R; Ripoll, D R; Pillardy, J; Saunders, J A; Kang, Y K; Gibson, K D; Scheraga, H A.
Affiliation
  • Oldziej S; Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301, USA.
Proc Natl Acad Sci U S A ; 102(21): 7547-52, 2005 May 24.
Article de En | MEDLINE | ID: mdl-15894609
Recent improvements in the protein-structure prediction method developed in our laboratory, based on the thermodynamic hypothesis, are described. The conformational space is searched extensively at the united-residue level by using our physics-based UNRES energy function and the conformational space annealing method of global optimization. The lowest-energy coarse-grained structures are then converted to an all-atom representation and energy-minimized with the ECEPP/3 force field. The procedure was assessed in two recent blind tests of protein-structure prediction. During the first blind test, we predicted large fragments of alpha and alpha+beta proteins [60-70 residues with C(alpha) rms deviation (rmsd) <6 A]. However, for alpha+beta proteins, significant topological errors occurred despite low rmsd values. In the second exercise, we predicted whole structures of five proteins (two alpha and three alpha+beta, with sizes of 53-235 residues) with remarkably good accuracy. In particular, for the genomic target TM0487 (a 102-residue alpha+beta protein from Thermotoga maritima), we predicted the complete, topologically correct structure with 7.3-A C(alpha) rmsd. So far this protein is the largest alpha+beta protein predicted based solely on the amino acid sequence and a physics-based potential-energy function and search procedure. For target T0198, a phosphate transport system regulator PhoU from T. maritima (a 235-residue mainly alpha-helical protein), we predicted the topology of the whole six-helix bundle correctly within 8 A rmsd, except the 32 C-terminal residues, most of which form a beta-hairpin. These and other examples described in this work demonstrate significant progress in physics-based protein-structure prediction.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Conformation des protéines / Protéines bactériennes / Biophysique / Modèles moléculaires / Protéomique Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Proc Natl Acad Sci U S A Année: 2005 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Conformation des protéines / Protéines bactériennes / Biophysique / Modèles moléculaires / Protéomique Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Proc Natl Acad Sci U S A Année: 2005 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique