Comparison of chromatographic ion-exchange resins V. Strong and weak cation-exchange resins.
J Chromatogr A
; 1118(2): 168-79, 2006 Jun 23.
Article
de En
| MEDLINE
| ID: mdl-16678189
Strong and weak cation-exchangers were compared for a number of chromatographic parameters, i.e. pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and scanning electron microscopy (SEM) pictures. Chromatographic resins investigated were Fractogel EMD SO3- (M), Fractogel EMD SE Hicap (M), Fractogel EMD COO- (M), MacroPrep 25S, MacroPrep High S, MacroPrep CM, CM HyperZ, and Matrex Cellufine C-500. Testing was done with three proteins: Anti-FVII Mab (IgG), aprotinin, and lysozyme. For lysozyme and aprotinin with pI above experimental pH, dependence of pH on retention was generally low, though some pronounced decrease of retention with increasing pH was observed for CM HyperZ. For Anti-FVII Mab with pI<7.5, binding was observed on several resins at pH 7.5. Efficiency results present the expected trend of increasing dependence of plate height as a function of increasing flow rate, and the highest flow dependence was observed for Fractogel EMD COO-. Particle size distribution was determined by two independent methods, coulter counting and SEM pictures, with fair agreement. Binding strength data of cation-exchange resins as a function of ionic strength depends on the protein, but binding and elution at high salt concentration may in general be performed with MacroPrep resins. Comparison of dynamic capacity data at 10% break-through and static capacity measurements shows that a very diverse utilization of approximately 25-90% of the total available capacity is employed during chromatographic operation. The effect of competitive binding from yeast fermentation components on dynamic binding capacity of aprotinin was studied showing a significant decrease in binding capacity. Sepharose FF, Toyopearl 650 M, and Ceramic HyperD F strong and weak cation-exchange resins were included in this study. Resins with good pure aprotinin capacity also performed well for aprotinin in fermentation broth, but the highest relative capacity was obtained with MacroPrep High S having a fairly low pure component dynamic capacity. Results of this paper may be used in the selection of resins for further testing in biopharmaceutical protein purification process development.
Recherche sur Google
Collection:
01-internacional
Base de données:
MEDLINE
Sujet principal:
Résines échangeuses de cations
/
Chromatographie d'échange d'ions
Langue:
En
Journal:
J Chromatogr A
Année:
2006
Type de document:
Article
Pays d'affiliation:
Danemark
Pays de publication:
Pays-Bas