Your browser doesn't support javascript.
loading
An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1.
Ramsey, I Scott; Mokrab, Younes; Carvacho, Ingrid; Sands, Zara A; Sansom, Mark S P; Clapham, David E.
Affiliation
  • Ramsey IS; Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA.
  • Mokrab Y; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Carvacho I; Department of Biochemistry, University of Oxford, Oxford, UK.
  • Sands ZA; Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA.
  • Sansom MSP; Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
  • Clapham DE; Department of Biochemistry, University of Oxford, Oxford, UK.
Nat Struct Mol Biol ; 17(7): 869-875, 2010 Jul.
Article de En | MEDLINE | ID: mdl-20543828
ABSTRACT
Hv1 voltage-gated proton channels mediate rapid and selective transmembrane H(+) flux and are gated by both voltage and pH gradients. Selective H(+) transfer in membrane proteins is commonly achieved by Grotthuss proton 'hopping' in chains of ionizable amino acid side chains and intraprotein water molecules. To identify whether ionizable residues are required for proton permeation in Hv1, we neutralized candidate residues and measured expressed voltage-gated H(+) currents. Unexpectedly, charge neutralization was insufficient to abrogate either the Hv1 conductance or coupling of pH gradient and voltage-dependent activation. Molecular dynamics simulations revealed water molecules in the central crevice of Hv1 model structures but not in homologous voltage-sensor domain (VSD) structures. Our results indicate that Hv1 most likely forms an internal water wire for selective proton transfer and that interactions between water molecules and S4 arginines may underlie coupling between voltage- and pH-gradient sensing.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Eau / Canaux ioniques Limites: Animals / Humans Langue: En Journal: Nat Struct Mol Biol Sujet du journal: BIOLOGIA MOLECULAR Année: 2010 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Eau / Canaux ioniques Limites: Animals / Humans Langue: En Journal: Nat Struct Mol Biol Sujet du journal: BIOLOGIA MOLECULAR Année: 2010 Type de document: Article Pays d'affiliation: États-Unis d'Amérique