Your browser doesn't support javascript.
loading
Changes in the optical properties of benzo[a]pyrene-coated aerosols upon heterogeneous reactions with NO2 and NO3.
Lu, Jessica W; Flores, J Michel; Lavi, Avi; Abo-Riziq, Ali; Rudich, Yinon.
Affiliation
  • Lu JW; Dept. of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel.
Phys Chem Chem Phys ; 13(14): 6484-92, 2011 Apr 14.
Article de En | MEDLINE | ID: mdl-21373662
ABSTRACT
Chemical reactions can alter the chemical, physical, and optical properties of aerosols. It has been postulated that nitration of aerosols can account for atmospheric absorbance over urban areas. To study this potentially important process, the change in optical properties of laboratory-generated benzo[a]pyrene (BaP)-coated aerosols following exposure to NO(2) and NO(3) was investigated at 355 nm and 532 nm by three aerosol analysis techniques. The extinction coefficient was determined at 355 nm and 532 nm from cavity ring-down aerosol spectroscopy (CRD-AS); the absorption coefficient was measured by photoacoustic spectroscopy (PAS) at 532 nm, while an on-line aerosol mass spectrometer (AMS) supplied real-time quantitative information about the chemical composition of aerosols. In this study, 240 nm polystyrene latex (PSL) spheres were thinly coated with BaP to form 300 or 310 nm aerosols that were exposed to high concentrations of NO(2) and NO(3) and measured with CRD-AS, PAS, and the AMS. The extinction efficiencies (Q(ext)) changed after exposure to NO(2) and NO(3) at both wavelengths. Prior to reaction, Q(ext) for the 355 nm and 532 nm wavelengths were 4.36 ± 0.04 and 2.39 ± 0.05, respectively, and Q(ext) increased to 5.26 ± 0.04 and 2.79 ± 0.05 after exposure. The absorption cross-section at 532 nm, determined with PAS, reached σ(abs) = (0.039 ± 0.001) × 10(-8) cm(2), indicating that absorption increased with formation of nitro-BaP, the main reaction product detected by the AMS. The single-scattering albedo (SSA), a measure of particle scattering efficiency, decreased from 1 to 0.85 ± 0.03, showing that changes in the optical properties of BaP-covered aerosols due to nitration may have implications for regional radiation budget and, hence, climate.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Chem Chem Phys Sujet du journal: BIOFISICA / QUIMICA Année: 2011 Type de document: Article Pays d'affiliation: Israël

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Chem Chem Phys Sujet du journal: BIOFISICA / QUIMICA Année: 2011 Type de document: Article Pays d'affiliation: Israël
...