Your browser doesn't support javascript.
loading
Planar diagrams from optimization for concave potentials.
Nechaev, S K; Sobolevski, A N; Valba, O V.
Affiliation
  • Nechaev SK; LPTMS, Université Paris Sud, 91405 Orsay Cedex, France.
Article de En | MEDLINE | ID: mdl-23410278
We propose a toy model of a heteropolymer chain capable of forming planar secondary structures typical for RNA molecules. In this model, the sequential intervals between neighboring monomers along a chain are considered as quenched random variables, and energies of nonlocal bonds are assumed to be concave functions of those intervals. A few factors are neglected: the contribution of loop factors to the partition function, the variation in energies of different types of complementary nucleotides, the stacking interactions, and constraints on the minimal size of loops. However, the model captures well the formation of folded structures without pseudoknots in an arbitrary sequence of nucleotides. Using the optimization procedure for a special class of concave-type potentials, borrowed from optimal transport analysis, we derive the local difference equation for the ground state free energy of the chain with the planar (RNA-like) architecture of paired links. We consider various distribution functions of intervals between neighboring monomers (truncated Gaussian and scale free) and demonstrate the existence of a topological crossover from sequential to essentially nested configurations of paired links.
Sujet(s)
Recherche sur Google
Collection: 01-internacional Base de données: MEDLINE Sujet principal: ARN / Modèles moléculaires / Modèles statistiques / Modèles chimiques Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Phys Rev E Stat Nonlin Soft Matter Phys Sujet du journal: BIOFISICA / FISIOLOGIA Année: 2013 Type de document: Article Pays d'affiliation: France Pays de publication: États-Unis d'Amérique
Recherche sur Google
Collection: 01-internacional Base de données: MEDLINE Sujet principal: ARN / Modèles moléculaires / Modèles statistiques / Modèles chimiques Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Phys Rev E Stat Nonlin Soft Matter Phys Sujet du journal: BIOFISICA / FISIOLOGIA Année: 2013 Type de document: Article Pays d'affiliation: France Pays de publication: États-Unis d'Amérique