Identifying preseizure state in intracranial EEG data using diffusion kernels.
Math Biosci Eng
; 10(3): 579-90, 2013 Jun.
Article
de En
| MEDLINE
| ID: mdl-23906137
The goal of this study is to identify preseizure changes in intracranial EEG (icEEG). A novel approach based on the recently developed diffusion map framework, which is considered to be one of the leading manifold learning methods, is proposed. Diffusion mapping provides dimensionality reduction of the data as well as pattern recognition that can be used to distinguish different states of the patient, for example, interictal and preseizure. A new algorithm, which is an extension of diffusion maps, is developed to construct coordinates that generate efficient geometric representations of the complex structures in the icEEG data. In addition, this method is adapted to the icEEG data and enables the extraction of the underlying brain activity. The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Sujet principal:
Crises épileptiques
/
Électroencéphalographie
Type d'étude:
Diagnostic_studies
/
Prognostic_studies
Limites:
Humans
Langue:
En
Journal:
Math Biosci Eng
Année:
2013
Type de document:
Article
Pays d'affiliation:
États-Unis d'Amérique
Pays de publication:
États-Unis d'Amérique