Your browser doesn't support javascript.
loading
The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes.
Weiss, Brian L; Savage, Amy F; Griffith, Bridget C; Wu, Yineng; Aksoy, Serap.
Affiliation
  • Weiss BL; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520 brian.weiss@yale.edu.
  • Savage AF; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520.
  • Griffith BC; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520.
  • Wu Y; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520.
  • Aksoy S; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520.
J Immunol ; 193(2): 773-82, 2014 Jul 15.
Article de En | MEDLINE | ID: mdl-24913976
The insect gut is lined by a protective, chitinous peritrophic matrix (PM) that separates immunoreactive epithelial cells from microbes present within the luminal contents. Tsetse flies (Glossina spp.) imbibe vertebrate blood exclusively and can be exposed to foreign microorganisms during the feeding process. We used RNA interference-based reverse genetics to inhibit the production of a structurally robust PM and then observed how this procedure impacted infection outcomes after per os challenge with exogenous bacteria (Enterobacter sp. and Serratia marcescens strain Db11) and parasitic African trypanosomes. Enterobacter and Serratia proliferation was impeded in tsetse that lacked an intact PM because these flies expressed the antimicrobial peptide gene, attacin, earlier in the infection process than did their counterparts that housed a fully developed PM. After challenge with trypanosomes, attacin expression was latent in tsetse that lacked an intact PM, and these flies were thus highly susceptible to parasite infection. Our results suggest that immunodeficiency signaling pathway effectors, as opposed to reactive oxygen intermediates, serve as the first line of defense in tsetse's gut after the ingestion of exogenous microorganisms. Furthermore, tsetse's PM is not a physical impediment to infection establishment, but instead serves as a barrier that regulates the fly's ability to immunologically detect and respond to the presence of these microbes. Collectively, our findings indicate that effective insect antimicrobial responses depend largely upon the coordination of multiple host and microbe-specific developmental factors.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Serratia marcescens / Trypanosoma brucei brucei / Mouches tsé-tsé / Tube digestif / Enterobacter Limites: Animals Langue: En Journal: J Immunol Année: 2014 Type de document: Article Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Serratia marcescens / Trypanosoma brucei brucei / Mouches tsé-tsé / Tube digestif / Enterobacter Limites: Animals Langue: En Journal: J Immunol Année: 2014 Type de document: Article Pays de publication: États-Unis d'Amérique