Your browser doesn't support javascript.
loading
Mechanical behaviour of a fibrous scaffold for ligament tissue engineering: finite elements analysis vs. X-ray tomography imaging.
Laurent, Cédric P; Latil, Pierre; Durville, Damien; Rahouadj, Rachid; Geindreau, Christian; Orgéas, Laurent; Ganghoffer, Jean-François.
Affiliation
  • Laurent CP; CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 avenue de la forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France. Electronic address: cedric.laurent@univ-lorraine.fr.
  • Latil P; CNRS, 3SR Lab, F-38000 Grenoble, France; Univ. Grenoble Alpes, 3SR Lab, F-38000 Grenoble, France. Electronic address: pierre.latil@3sr-grenoble.fr.
  • Durville D; CNRS, MSSMat, UMR 8579, Ecole Centrale Paris, Grande Voie des Vignes, 92290 Chatenay-Malabry, France. Electronic address: damien.durville@ecp.fr.
  • Rahouadj R; CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 avenue de la forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France. Electronic address: rachid.rahouadj@univ-lorraine.fr.
  • Geindreau C; CNRS, 3SR Lab, F-38000 Grenoble, France; Univ. Grenoble Alpes, 3SR Lab, F-38000 Grenoble, France. Electronic address: christian.geindreau@3sr-grenoble.fr.
  • Orgéas L; CNRS, 3SR Lab, F-38000 Grenoble, France; Univ. Grenoble Alpes, 3SR Lab, F-38000 Grenoble, France. Electronic address: laurent.orgeas@3sr-grenoble.fr.
  • Ganghoffer JF; CNRS, LEMTA, UMR 7563, Université de Lorraine, 2 avenue de la forêt de Haye, 54502 Vandoeuvre-lès-Nancy, France. Electronic address: jean-francois.ganghoffer@univ-lorraine.fr.
J Mech Behav Biomed Mater ; 40: 222-233, 2014 Dec.
Article de En | MEDLINE | ID: mdl-25243672
ABSTRACT
The use of biodegradable scaffolds seeded with cells in order to regenerate functional tissue-engineered substitutes offers interesting alternative to common medical approaches for ligament repair. Particularly, finite element (FE) method enables the ability to predict and optimise both the macroscopic behaviour of these scaffolds and the local mechanic signals that control the cell activity. In this study, we investigate the ability of a dedicated FE code to predict the geometrical evolution of a new braided and biodegradable polymer scaffold for ligament tissue engineering by comparing scaffold geometries issued from FE simulations and from X-ray tomographic imaging during a tensile test. Moreover, we compare two types of FE simulations the initial geometries of which are issued either from X-ray imaging or from a computed idealised configuration. We report that the dedicated FE simulations from an idealised reference configuration can be reasonably used in the future to predict the global and local mechanical behaviour of the braided scaffold. A valuable and original dialog between the fields of experimental and numerical characterisation of such fibrous media is thus achieved. In the future, this approach should enable to improve accurate characterisation of local and global behaviour of tissue-engineering scaffolds.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Matériaux biocompatibles / Test de matériaux / Structures d'échafaudage tissulaires / Ligaments Langue: En Journal: J Mech Behav Biomed Mater Sujet du journal: ENGENHARIA BIOMEDICA Année: 2014 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Matériaux biocompatibles / Test de matériaux / Structures d'échafaudage tissulaires / Ligaments Langue: En Journal: J Mech Behav Biomed Mater Sujet du journal: ENGENHARIA BIOMEDICA Année: 2014 Type de document: Article
...