Your browser doesn't support javascript.
loading
Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling.
Santos, Celio X C; Hafstad, Anne D; Beretta, Matteo; Zhang, Min; Molenaar, Chris; Kopec, Jola; Fotinou, Dina; Murray, Thomas V; Cobb, Andrew M; Martin, Daniel; Zeh Silva, Maira; Anilkumar, Narayana; Schröder, Katrin; Shanahan, Catherine M; Brewer, Alison C; Brandes, Ralf P; Blanc, Eric; Parsons, Maddy; Belousov, Vsevelod; Cammack, Richard; Hider, Robert C; Steiner, Roberto A; Shah, Ajay M.
Affiliation
  • Santos CX; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Hafstad AD; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK Cardiovascular Research Group, Department of Medical Biology, The Arctic University of Norway, Tromsø, Norway.
  • Beretta M; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Zhang M; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Molenaar C; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Kopec J; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK Randall Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Fotinou D; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK Randall Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Murray TV; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Cobb AM; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Martin D; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Zeh Silva M; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK Randall Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Anilkumar N; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Schröder K; Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
  • Shanahan CM; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Brewer AC; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Brandes RP; Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.
  • Blanc E; MRC Centre for Developmental Neurobiology, King's College London, London, UK.
  • Parsons M; Randall Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Belousov V; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  • Cammack R; Institute of Pharmaceutical Science, King's College London, London, UK.
  • Hider RC; Institute of Pharmaceutical Science, King's College London, London, UK.
  • Steiner RA; Randall Division, King's College London British Heart Foundation Centre of Excellence, London, UK.
  • Shah AM; Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, UK ajay.shah@kcl.ac.uk.
EMBO J ; 35(3): 319-34, 2016 Feb 01.
Article de En | MEDLINE | ID: mdl-26742780
ABSTRACT
Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine-threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species-generating NADPH oxidase-4 (Nox4) is induced downstream of ATF4, binds to a PP1-targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4-regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia-reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4-GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Transduction du signal / Facteur-2 d'initiation eucaryote / Récepteur neuropeptide Y / NADPH oxidase / Protein Phosphatase 1 Limites: Animals / Humans Langue: En Journal: EMBO J Année: 2016 Type de document: Article Pays d'affiliation: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Transduction du signal / Facteur-2 d'initiation eucaryote / Récepteur neuropeptide Y / NADPH oxidase / Protein Phosphatase 1 Limites: Animals / Humans Langue: En Journal: EMBO J Année: 2016 Type de document: Article Pays d'affiliation: Royaume-Uni